NOAA Technical Memorandum NMFS F/NWC-92

Standard Analytical Procedures
ofthe NOAA National Analytical Facility, 1985-1986

Extractable Toxic Organic Compounds, Second Edition

Prepared for
The NOAA National Status and Trends Program

By
William D. MacLeod Jr., Donald W. Brown, Andrew J. Friedman, Douglas G. Burrows, Orlando Maynes, Ronald W. Pearce, Catherine A. Wigren and Richard G. Bogar

October 1985
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration National Marine Fisheries Service

BI BLI OGRAPH C I NFORMATI ON

PB86-147873
St andard Anal ytical Procedures of the NOAA (National Oceani c and At mospheric Admini stration) National Anal ytical Facility, 1985-1986: Extractable Toxic Organic Compounds, Second Edition.

Oct 85
by W D. MacLeod, D. W Brown, A. J. Friednan, D. G Burrous, and \mathbf{O} Maynes.

PERFORMER: National Marine Fisheries Service, Seattle, WA Northuest and Alaska Fisheri es Center. NOAA- TM NMFS- F/ NMC- 92

See al so P85-126282.
Numerous recent studies denonstrate associ ations bet ween organi c chemical contami nation of the aquatic environnent and impacts on envi ronmental health and, potentially, on human health (cf. Malins et al. 1984). If the results of one study are to be compared with those of another, uniform anal ytical methods for the chemicals will be required. To meet this need, NOAA's National Anal ytical Facility (NAF) prepared this Techni cal Menorandum as a methods nanual for extractable organic chemicals in marine sedi ments and tissues. It applies specifically to the organic analytes (i.e., the chemicals to be analyzed for) sel ected for docunentation by NOAA's National Status and Trends (S\&T) Program

KEYVDRDS:	*Organic compounds, *Chemi cal anal ysi s,
	*Environment al i mpacts, *Sedi ments,
	*Tissues (Bi ol ogy), *Toxic substances,
	*Environnent al heal th, *VAter pol I uti on
	detection.

Avai Iable from the National Techni cal Inf or nation Service, SPRI NGFI ELD, VA 22161

PRI CE CODE: PC AO6/ MF A01

STANDARD ANALYTI CAL PROCEDURES

OF THE

NOAA NATI ONLL ANALYTI CAL FACI LI TY, 1985-86

EXTRACTABLE TOXIC ORGAN C COMPOUND
SECOND EDI TI ON

Prepared for
 The NOAA National Status and Trends Program

By
William D. MacLeod, Jr.
Donal d W Brown
Andrew J. Fri edman
Dougl as G Burrous
Orlando Maynes
Ronal d W Pearce
Catherine A Wigren
Ri chard G Bogar

National Marine Fi sheries Service Northwest and Al aska Fi sheri es Center
Envi ronnental Conservation Di vi si on
2725 Montlake Boul evard East Seattle, Kishi ngt on 98112

Oct ober 1985

CONTENTS

Page
Pref ace V
I nt roduction 1
Section 1, Materials 5
Section 2, 6:4 Cycl ohexane: Methanol Azeotrope Preparation 13
Section 3, Preparation of 6:4:3 Sol vent 19
Section 4, Testing Sol vents for Purity 23
Section 5, Lot Testing/Calibration of Silica Gel/Alumina 37
Section 6, Sephadex LH 20 Col um Preparation and Cal ibration 45
Section 7, Sedi ment Extraction 53
Section 8, Ti ssue Extraction 59
Section 9, Dry Wéi ght Determination 65
Section 10, Silica Gel / Al umi na Chronat ography 69
Section 11, 6: 4: 3 Sephadex LH 20 Chronatography 77
Section 12, GC Anal ysi s 85
Acknow edgnents 111
Literature Cited 113
Appendi x 115

THIS PAGE INTENTIONALLY LEFT BLANK

PREFACE

The anal ytical procedures for marine envi ronnental sampl es described herein result from ni ne years of methods devel opment and application by the National Anal ytical Facility (NAF) of the National Oceanic and At nospheric Administration (NOAA). These procedures have been in effect for one year in the National Stat us and Trends (S\&T) Program of NOAA' s National Ocean Service. Thi s Second Edition, NOAA Techni cal Menorandum NMFS F/ NMC-90, i ncorporates additions to and revi si ons of NOAA Techni cal Menorandum NMFS F/ NME-64, whi ch is hereby superseded.

Begun in 1984, the S\&T Program seeks to document and assess the present status and future trends of environmental quality throughout the nation's coasts and estuaries. Basi cally, the S\&T Program asks:

What are the current conditions of the nation's coastal zone?
Are these conditions getting better or uorse?
To answer such questions the S\&T Program seeks to enploy a nationally uniform set of envi ronmental neasurements. To hel pattain that uniformity, this Techni cal Menorandum documents the anal ytical procedures for the extractable toxic organic chemicals.

The National Status and Trends Program consists of the following maj or components:

- The National Benthic Survei II ance Project
- The National "Mussel Vhtch" Project
- The Vater Quality Mbnitoring Project
- The Synthesis of Historical and New Data

This publication is a laboratory manual for use by anal ytical chemists uorking on the first two components. The National Benthic Surveillance Project is conducted by NOA' s National Marine Fisheries Service (NMFS). Under this project NMFS chemists measure toxic chenicals in bottom sedi ments and in the fish associ ated with those sedi ments. Samples cone from about 150 coastal and estuarine stations, predominantly in urban, industrial areas, but with nonurban areas incl uded for reference. In the National "Missel Vatch" Project, I aboratories under contract to NOAA will anal yze mussel s and ot her bi val ves for the same toxic chemicals planned for the National Benthic Surveillance Project. These nollusks will cone from about 150 coastal and estuarine sites nationw de.

For further infornation on NOAA' s National Stat us and Trends Program write: NOAN Nati onal Ocean Service, N OMA32, Rockville, MD 20852.

I NTRODUCTI ON

Nunerous recent studi es denonstrate associ ations between organi c chemical contam nation of the aquatic envi ronment and impacts on envi ronmental heal th and, potentially, on human health (cf. Malins et al. 1984). If the results of one study are to be compared with those of another, uniform anal ytical nethods for the chemical s will be requi red. To neet thi s need, NOAA's National Anal ytical Facility (NAF) prepared this Technical Menorandum as a nethods nanual for extractable organic chenical in marine sedi ments and tissues. It applies specifically to the organic anal ytes (i.e., the chemi cal s to be anal yzed for) sel ect ed for documentation by NOA' s National Status and Trends (S\&T) Program (Table 1).

The anal ytical procedures for the organic anal ytes listed in Table 1 are, for a host of reasons, lengthy and complex. Hence, it is important that the Iaboratories partici pating in the S\&T Program have specific anal ytical procedures -- procedures that are described in the detail shown here. This nanual is primarily for use by anal ytical chemists of the National Marine Fisheries Service partici pating in the National Benthic Surveillance Project and by Iaboratories under contract to NOAA for the National "Mussel Whtch" Proj ect. Use in ot her comparable applications is encouraged, as are suggestions and coments.

NOAA National Anal ytical Facility
Si nce its inception in 1976, NOAA's National Anal ytical Facility has been at the forefront in devel oping and empl oying advanced methods to anal yze aquatic samples for traces of toxic chemicals. These activities have focused primarily on methods for determining industry-rel ated organic compounds such as aromatic hydrocarbons and chl ori nated hydrocarbons in both sedi nents and organi sns. Mbst of the anal ytes are listed anong the EPA NRDC "Pri ority Pol I utants" (Envi ronmental Protection Agency 1979).

Over the years NF nethods have found wide application in envi ronnental studi es concerni ng the Strait of Juan de Fuca (MacLeod et al. 1977, Brown et al. 1979), the New York Bi ght (MacLeod et al. 1981), and Puget Sound (Malins et al. 1980, 1982), anong others. As the methods are nei ther si mple nor inexpensi ve, it is nost important that the soundest anal ytical techni ques available be empl oyed and that improvenents be continually sought. Thus, evol ution of the nethodol ogy is assured, and this manual will be updated periodically as nethods improve.

Quality of Anal ytical Data

Horwitz and coworkers (1980) observed that the uncertainty in the anal ytical results in interlaboratory comparisons increases in a regul ar progression as the concentrations of the particular anal yte descend from fractions of a percent to parts-per-million (ppm) to parts-per-billion (ppb). According to their studies, standard devi ations (s) for interlaboratory compari sons of neans (\bar{x}) around 10 ppb shoul d not be

Table 1. Extractable organic chemicals and internal standards sel ected for documentation by NOA' s National Status and Trends Program

aromatic hydrocarbons (AHs)	chlorinated compounds
naphthalene	hexachlorobenzene
2-methylnaphthalene	lindane ($\mathrm{Y}_{\text {- }} \mathrm{BHC}$)
1-methylnaphthal ene	heptachlor
biphenyl	heptachlor epoxide
2,6-dimethylnaphthalene	aldrin
acenaphthene	dieldrin
fluorene	α-chlordane
phenanthrene	trans-nonachlor
anthracene	mirex
1-methylphenanthrene	
fluoranthene	O, P^{\prime}-DDE () DDTs
pyrene	P, ${ }^{\prime}$ - DDE
benz[a]anthracene	
chrysene	p,p'-DDD)
benzo[e]pyrene	$\underline{\underline{0}} \mathrm{p}^{2}-$ DDT ${ }^{\text {a }}$)
benzo[a]pyrene	P, 'p'-DDT
perylene	
dibenz[, $\underline{\text {, }}$, $]$ anthracene	dichlorobiphenyls) PCBs
	trichlorobiphenyls
	tetrachlorobiphenyls
internal standards (I-Stds)	pentachlorobiphenyls
	hexachl orobi phenyls
naphthalene-d8	heptachlorobiphenyls
acenaphthene-d10	octachl orobiphenyls
perylene-d 12	nonachlorobiphenyls
hexamethylbenzene (HMB)	
tetrachloro-m-xylene (TCMX)	natural product (sewage tracer)
5α-androstan-3 β-ol	
4,4'-dibromooctafluorobiphenyl	coprostanol

expected to be better than 35% of the grand nean (\bar{X}). Our experience (MacLeod et al. 1982) has shown this thesis to be realistic, but it of ten di snays or confounds statisticians, nodel ers, and administrators. Neverthel ess, the issue must be faced, and the best possible preci si on must be secured for the anal ytical results. Accordingly, the methods publ i shed here are the best compilation of techniques we could devise.

In implementing these procedures the following quality assurance (QA) protocols have been observed. First, the procedures were validated statistically in NAF's laboratories, consistent with the Horwitz nodel above. Then, NAF di stributed calibrating sol utions and previ ously anal yzed sample extracts to the participating laboratories for testing their neasuring equi pnent, i.e., the gas chronatograph(s). Once consistent and satisfactory results have been obtai ned, interim reference naterials (IRM) are supplied to the laboratories to assess their proficiencies with the overall anal ytical procedures. This is repeated on a continuing basis throughout the performance of anal yses. Our constant goal is to have interlaboratory standard devi ations that conform as closel y as possible to the Horwitz nodel.

Summary of Anal ytical Procedures

I n general, anal yses of sedi ment and organi sns follow the schene shown in Fi gure 1, as summari zed bel ow

Thaw the sample (if frozen), renove excess water, and wei gh the wet sample (ca. 10 g for sedi ment or 3 g for tissue) to the nearest 0.01 g . Add the extraction sol vent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and internal standards (I-Stds), then mix/grind/extract sample with sodi um sulfate three ti mes under $\mathrm{CH}_{2} \mathrm{C}_{2}$. Conbi ne the sol vent extracts and concentrate them by boiling. Chronatograph the extract concentrate on silica gel and al umina, and collect fractions el uted with pentane (fraction SA1) and $50 \% \mathrm{CH}_{2} \mathrm{C}_{2}$ in pent ane (fraction SA2). In sedi ments onl y, conti nue to el ute with $\mathrm{CH}_{2} \mathrm{C}_{2}$ and $\mathrm{CH}_{3} \mathbf{O H}$ (fraction SA3). Concentrate fraction SA2 by boiling, and then chronatograph it on precalibrated Sephadex LH 20. Collect the second fraction from Sephadex chronatography (fraction SA2-L2), and concentrate it to 1 mL if from sediment or to 0.1 mL if from tissue. Anal yze fraction SA2-L2 from sedi nent and tissue (except liver) for the aromatic hydrocarbons (Alts) in Table 1 (page 2) by capillary gas chronatography (GC) with a flame-ionization detector (FID). Al so anal yze fraction SA2-L2 from all samples for the chl orinated hydrocar bons on page 2, using an el ectron- capt ure detect or (ECD). If hexachl or obenzene (HCB) is found, al so anal yze fraction SAl for HCB as with fraction SA2-L2. Concentrate fraction SA3 from sedi ments, and anal yze it by GC/FID for coprostanol.

The procedures summarized above are presented in detailed sections, each of which deal s with a maj or anal ytical operation. The order of the sections appears on the Contents page.

Fi gure 1. Summary of the anal ytical procedures of the National Anal ytical Facility for trace extractable toxic organic anal ytes.

SECTI ON 1

MATERI ALS

THIS PAGE INTENTIONALLY LEFT BLANK

MATERI ALS

Disclai ner: Mention of a product or company nane does not imply endorsenent by the Departnent of Comerce to the excl usi on of others that nay be suitable.
A. Solvents

cyclohexane	Brand: ___ Lot \#
hexane	Brand: \qquad , Lot \# \qquad checked per Section 4E, page 35
methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	Brand: \qquad , Lot \# \qquad checked per Section 4A, page 25
redistilled $\mathrm{CH}_{3} \mathrm{OH}$	Prepared from $\mathrm{CH}_{3} \mathrm{OH}$ per Section 2, Part C, page 17, and checked per Section 4A, page 25
dichloromethane ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$)	Brand: \qquad , Lot \# \qquad checked per Section 4C, page 31
pentane	Brand: \qquad , Lot \# \qquad checked per Section 4D, page 33

B. Column Packings
silica gel
alumina
size-exclusion gel
sand
C. Reagents
$\mathrm{Na}_{2} \mathrm{SO}_{4}$
copper
D. Miscellaneous

E. Yellow Laboratory Lighting

Yel low fluorescent and/ or incandescent lights
Yel I ow transparent acetate sheeting on wings

F. St andards

HMB GC/I-Std solution, ca. $100 \mathrm{ng} / \mu \mathrm{L}$ of hexamethylbenzene in hexane Actual conc.: Std \# \qquad , ng/uL \qquad ; Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad

TCMX GC/I-Std solution, ca. $2 \mathrm{ng} / \mu \mathrm{L}$ of tetrachloro-m-xylene in hexane Actual conc.: Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad ; Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad

AH I-Std solution, ca. $50 \mathrm{ng} / \mu \mathrm{L}$ of each I-Std in hexane Actual conc.: Std \# _ Std \#
naphthalene-d8
$n g / \mu \mathrm{L}$ \qquad $\mathrm{ng} / \mathrm{LL}$ \qquad
acenaphthene-d10
" \qquad " perylene-d 12 \qquad
\qquad

PES I-Std solution, ca. $1 \mathrm{ng} / \mu \mathrm{L}$ of 4,4'-dibromooctafluorobiphenyl in hexane Actual conc.: Std \# \qquad , $\mathrm{ng} / \mu \mathrm{L}$ \qquad ; Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad

COP I-Std solution, ca. $50 \mathrm{ng} / \mu \mathrm{L}$ of 5α-androstan- $3 \beta-01$ in hexane Actual conc.: Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad ; Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad

COP GC-calibration-check solution, ca. $5 \mathrm{ng} / \mu \mathrm{L}$ in hexane of:

Actual conc.:
Std \# \qquad Std \# \qquad hexamethylbenzene (GC/I-Std) ng/ mL \qquad $n g / \mu \mathrm{L}$ \qquad
5α-androstan- 3β-01
coprostanol
$"$
${ }^{\prime \prime}$
\square
\square
" \qquad
"

COP spike solution, ca. $50 \mathrm{ng} / \mathrm{uL}$ of coprostanol in hexane Actual conc.: Std \# \qquad , $n g / \mu \mathrm{L}$ \qquad ; Std \# \qquad , $\mathrm{ng} / \mu \mathrm{L}$
F. St andards (conti nued)

AH GC-cal ibration-check sol ution, ca. $5 \mathrm{ng} / \mu \mathrm{L}$ in hexane of:

Actual conc.: Std \# \qquad $n g / \mu L$ \qquad
"
\qquad

Std \# \qquad
\qquad ${ }^{\prime \prime}$ \qquad

1-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
acenaphthene
fluorene
phenanthrene
anthracene
1-methylphenanthrene
fluoranthene
pyrene
benz[a]anthracene
chrysene
ben zo[e] p yrene
benzo[a] b prene
perylene
dibenz[a,h]anthracene
naphthalene-d8 (I-Std)
acenaphthene- d $_{10}$ (I-Std)
perylene- ${ }_{12}$ (I-Std)

F. St andards (conti nued)

PES GC- cal i bration-check sol ution,
ca. $0.1 \mathrm{ng} / \mu \mathrm{L}$ in hexane of:

Actual conc.:
tetrachloro-m-xylene (GC/I-Std)
hexachlorobenzene
lindane ($\gamma-\mathrm{BHC}$)
heptachlor
heptachlor epoxide
aldrin
o-chlordane
trans-nonachlor
dieldrin
mirex
o, $\mathbf{p}^{\prime}-D D E$
P, $P^{\prime}-D D E$
o, $\mathrm{p}^{\prime}-\mathrm{DDD}$
p, $p^{\prime}-D D D$
o, ${ }^{\prime}$ - DDT
p, ${ }^{\prime}-D D T$
2,4'-dichlorobiphenyl
2,5,4'-trichlorobi phenyl
2,4,2',4'-tetrachlorobiphenyl
2,4,5,2'5'-pentachlorobiphenyl
2,4,5,2',4'5'- hexachlorobiphenyl
2,3,4,5,6,2',5'-heptach1 orobi phenyl
2,3,4,5,2', $3^{\prime}, 4^{\prime}, 5^{\prime}$-octachlorobiphenyl
2,3,4,5,6,2',3',4',5'-nonachlorobiphenyl
4,4'-dibromooctafluorobiphenyl (I-Std)
\qquad

F. Standards (conti nued)

AH spi ke sol ution, ca. $50 \mathrm{ng} / \mu \mathrm{L}$ in hexane of:

naphthalene
2-methylnaphthalene
1-methylnaphthalene
biphenyl
2,6-dimethylnaphthalene
acenaphthene
fluorene
phenanthrene
anthracene
1-methylphenanthrene
fluoranthene
pyrene
benz[a]anthracene
chrysene
benzo[e]pyrene
benzo[a]pyrene
perylene
dibenz[a,h]anthracene
$\mathrm{ng} / \mathrm{mL}$ \qquad
" \qquad $n g / \mu L$ \qquad
${ }^{\prime \prime}$
Std \# \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

F. Standards (conti nued)

PES spi ke sol ution, ca. $1 \mathrm{ng} / \mu \mathrm{L}$ in hexane of:

Actual conc.:
hexachlorobenzene
lindane ($\gamma-B H C$)
heptachlor
heptachlor epoxide
aldrin
α-chlordane
trans-nonachlor
dieldrin
mirex
o, $\mathrm{p}^{\prime}-\mathrm{DDE}$
p, $\mathrm{p}^{\prime}-D D E$
o, $\underline{P}^{\prime}-D D D$
p, $\mathrm{p}^{\prime}-$ DDD
o, $P^{\prime}-D D T$
p, $\mathrm{p}^{\prime}-\mathrm{DDT}$
2,4'-dichlorobiphenyl
2,5,4'-trichl orobi phenyl
2,4,2',4'-tetrachlorobiphenyl
2,4,5,2',5'-pentachlorobiphenyl
2,4,5,2', 4', 5'-hexachlorobiphenyl
$2,3,4,5,6,2^{\prime}, 5^{\prime}$-heptach1 orobi pheny1
2,3,4,5,2', $3^{\prime}, 4^{\prime}, 5^{\prime}$-octachlorobiphenyl
2,3,4,5,6,2', $3^{\prime}, 4^{\prime}, 5^{\prime}$-nonach1 orobiphenyl \qquad

Std \# \qquad $\mathrm{ng} / \mu \mathrm{L}$ \qquad ${ }^{\prime}$ \qquad

SECTI ON 2

6: 4 CYCLOFEXANE: METHANOL
AZEOTROPE PREPARATI ON

THIS PAGE INTENTIONALLY LEFT BLANK

6: 4 CYCLOFEXANE: METHANOL AZEOTROPE PREPARATION

A Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - uash all glassware and naterials contacting the sol vents.

G assware

22-L round bottom boiling flask with a 24/ 40-STJ port, a 71/60-STJ port, and a thernoneter well

22-L round bottom receiver flask with a 45/50-STJ port
5-L round bottom receiver flask with a 24/40-STJ port
2-L TC graduat ed cyl i nder
200- mm OD, I ong- stem funnel
adapter, 45/50-STJ to 24/40-STJ
other distillation apparatus (24/40-STJ): fractionation col um
($5 \mathrm{~cm} \times 50 \mathrm{~cm}$ packed with $7-\mathrm{mm}$ lengths of $6-\mathrm{mm}$ glass tubing), stillhead with 10/30-STJ thernoneter port, condenser (Corni ng 2400 or Kinble 18140), 3 - way recei ver val ve (8 - $\mathbf{~ m m}$ bore Teflon stopcock), misc. fittings

Sol vents
10 L cycl ohexane
8 L net hanol

Other Materials and Apparatus
heating mantle for 22-L flask
Variac transf orner
2 ea autonatic temperat ure controllers (YSI Mbdel s 63RC and 74)
timing clock
Hoff nan cl amp
boiling chips
2 ea Lab Jax
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{C}_{2}$-filled)

B. Procedure

1. Whsh al I gl assuare, incl uding the di stillation apparat us, twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bef ore each run.
2. Attach the 5 - L flask to the rear recei ver-val ve port, and set the recei ver val ve to collect the distillate in it. Attach the $\mathbf{2 2 - L}$ recei ver flask to the front recei ver-val ve port.
3. Put the 22-L boiling flask in the heating nantle. Place the stillhead into the top of the fractionation col um, and fit the col um into the $24 / 40-\mathrm{ST}$ port of the boiling flask. Align the still head outlet and the condenser inlet fittings, then secure the ball and socket j oint with the Hof f man cl amp.
4. Kish the glass sensor probe of the Mbdel 74 temperature controller twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and set it firny into the 10/ 30-STJ port at the top of the still head. Insert the netal probe of the Mbdel 63RC temperature controller into the ther noneter well of the boiling flask.
5. Place a large funnel in the $71 / 60-\mathrm{STJ}$ port, then fill the boiling flask with 10 L of cycl ohexane and 8 L of $\mathrm{CH}_{3} \mathbf{O H}$ (i.e., an excess of $\mathrm{CH}_{3} \mathrm{OH}$). Add $40-50$ boiling chips, and stopper the flask.
6. Turn on the condenser cooling water. Set the Variac at 60, the Model 74 temperature controller at $55.5^{\circ} \mathrm{C}$, and the Mbdel 63RC temperat ure controller at $68^{\circ} \mathrm{C}$. Start the distillation by switching on the timer.
7. Collect 3 L of $\mathbf{6 : 4}$ azeotrope forerun (during 6 hr) in the 5 - L recei ver flask. Then switch the recei ver val ve to collect nost of the distillate in the 22-L recei ver during 24 hr .
B. Procedure (conti nued)

As the sol vent temperature in the boiling flask rises toward $65^{\circ} \mathrm{C}$, distillation slows. Only a small anount (ca. 1 L), nostly $\mathrm{CH}_{3} \mathrm{OH}$ remai ns undi stilled, so switch the timer of to stop the distillation.
8. Allow the distillation apparatus to cool, then di sassemble it. Discard the boiling chips, and set the undistilled sol vent aside for recycling (see Note, step 10). Whsh the apparatus and flasks twice with $\mathrm{CH}_{2} \mathrm{C}_{2}$. Reassenble as before, pouring only the 6: 4 azeotropic distillate (a 2-phase mixture) from the I arge recei ver back into the boiling flask. Add $40-50$ boiling chi ps.
9. Make sure that the cooling water is flowing, then switch timer on, and distill 1 L of forerun into the 5 - L flask (see Note, step 10). Switch the recei ver val ve so as to collect nost of the distillate in the 22-L receiver. Distill until the sol vent level (ca. $1 \mathbf{L}$) reaches the bottom of the thernoneter well. Switch of f the timer.
10. Allow the apparatus to cool. Renove the I arge recei ver. Discard the boiling chips and set the undi stilled sol vent aside for recycling.

Note: These boiling flask residues and foreruns may be saved and recycled into step 5 of a subsequent di stillation. However, they should not be recycl ed nore than twice.
11. Proceed to Section 3 (page 19) with the 6: 4 azeotrope.
C. Redi stilled Methanol

1. To prepare redistilled $\mathrm{CH}_{3} \mathrm{OH}$, add $1 / 10$ th vol une of carbon-filtered, di stilled $\mathrm{H}_{2} \mathrm{O}$ to a vol une of azeotrope fromstep B. 7 (page 16).
2. Allow the phases to separate in a separatory funnel.
3. Drain the lower phase into a boiling flask.
4. Adj ust the Variac to setting 70, the Mbdel 74 temp. controller to $66^{\circ} \mathrm{C}$, and the Mdel 63 RC temp. controller to $75^{\circ} \mathrm{C}$.
5. Distill pure $\mathrm{CH}_{3} \mathrm{OH}$ through the fractionation col umn. Check the purity per Section 4A (page 25).

Note: The upper phase remaining in the separat ory funnel, nostly cycl ohexane, can be recycled through step B. 5 (page 16).

SECTI ON 3

PREPARATI ON OF 6: 4:3 SOLVENT

THIS PAGE INTENTIONALLY LEFT BLANK

PREPARATI ON OF 6: 4:3 SOLVENT

A. Equipnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all of the glassware and naterials contacting the distilled sol vent.
G assuare
2-L TC graduated cyl inder
200- mm OD, I ong-stem funnel
20-L carboy
50-n. vol unetric pi pet
1-L 24/ 40-STJ Erlenneyer flask with stopper
4-L standard sol vent bottles
Sol vents
6: 4 cycl ohexane: methanol azeotrope (Sect ion 2, step B.II, page 17)
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Other Materials and Apparat uspi pet filler, 3-val ve, rubber (for vol unetric pipet)
Teflon-lined stopper for carboy
500-mL Tefl on wash- bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
B. Procedure

1. Prepare a sample of 6: 4:3 sol vent for purity testing by pipetting 200 mL each of the upper and lower I ayers of the 6: 4 azeotrope into the flask.
2. Add $\mathbf{1 2 0} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the flask and mix well. Check the purity of the sol vent by proceeding with this sample to Section 4B (page 29).
B. Procedure (conti nued)
3. If the purity of the sample from step 2 is acceptable according to Section 4B (page 29), proceed to step 4. Otherwise, return the remaining 6: 4 azeotrope to the boiling flask in Section 2, step B. 5 (page 16) for redistillation.
4. Transfer the remaining 6: 4 azeotrope from step 1 into the carboy in 2000-mL increnents, noting the total vol une.
5. Maltiply the total vol une of the $\mathbf{6 : 4} \mathbf{4}$ azeotrope by $\mathbf{0}$. 30 . This is the vol une of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to be added to the 6: 4 azeotrope to make the 6: 4: 3 sol vent.
6. Add the anount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cal cul ated in step 5 to the carboy.
7. Stopper the carboy, and mix the 6: 4: 3 sol vent until it is compl etely honogeneous.
a. Transfer the 6: 4: $\mathbf{3}$ sol vent into 4-L sol vent bottles for storage until use in Section 6 (page 45) or in Section 11 (page 77).

SECTI ON 4
 TESTI NG SOLVENTS FOR PURI TY*

A. $\mathrm{CH}_{3} \mathrm{OH}$ and Redi stilled $\mathrm{CH}_{3} \mathrm{OH}$, page 25
B. 6: 4: 3 Sol vent, page 29
C. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, page 31
D. Pentane, page 33
E. Hexane, page 35

[^0]
THIS PAGE INTENTIONALLY LEFT BLANK

A. $\mathrm{CH}_{3} \mathrm{OH}$ AND REDI STI LLED $\mathrm{OH}_{3} O H$ PURI TY

1. Equi pment List - Note: $\quad \mathrm{CH}_{2} \mathrm{C}_{2}$ - nash all glassware and material s contacting the sample.

G assware
100-mL TC graduated cyl inder
3 ea 500 - mL. separatory funnel s
6 ea 500-mL 24/40-STJ Erlenneyer flasks with stoppers
3 ea 25-nL 19/22-STJ Kontes concentrator tubes with stoppers
3 ea 3-bal I 24/40-STJ Snyder col ums
transfer pi pets (Pasteur style) with rubber bul bs
6 ea $\mathbf{2 - m L}$ GC vi al s

Sol vents
$200 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}$ or redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ (Section 2, Part C, page 18)
$135 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{C}_{2}$ (not incl udi ng washes)
1500 nL carbon-filtered, distilled $\mathrm{H}_{2} \mathrm{O}$

GC Internal Standards (per sample)
$50 \mu \mathrm{~L}$ HB GC/I-Std sol ution
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution

Other Materials and Apparatus
water bath
boiling chi ps
nodified Kontes tube heater (block contains: Al inserts fitted to the 0.7 mL line of the tube tip, and an Alfoil shroud with TLC plate wi ndow 5 cm taller than tubes in block)
100- $\mu \mathrm{L}$ syri nges
Vortex Geni e
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
2. Procedure for $\mathrm{CH}_{3} \mathrm{OH}$ or Redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ - Note: Anal yze dupl icate samples pl us a blank
a. Extraction
(1) Add 100 mL of $\mathrm{CH}_{3} \mathrm{OH}$ or redistilled $\mathrm{CH}_{3} \mathrm{OH}$ (Section 2, Part C, page 18) and 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a separat ory funnel. Swirl the funnel for a few seconds to mix well.
(2) Add $\mathbf{2 5 0} \mathbf{m L}$ of carbon-filtered, distilled $\mathrm{H}_{2} \mathrm{O}$ to the separatory funnel, and shake it vi gorously for 2 min . Al ow the phases to separate well.
(3) Drain the Iower phase into a flask, Ieaving behi nd any emul si on layer. Save the contents of the flask.
(4) Add 10 mL of $\mathrm{CH}_{2} \mathrm{O}_{2}$ to the separatory funnel, and shake it vi gorously for 2 min . Allow the phases to separate well.
(5) Drain the Iower phase into the flask fromstep 3, includi ng any emil si on I ayer.
(6) Di scard the contents of the separatory funnel.
(7) Pour the extract from the flask back into the separatory funnel.
(8) Wash the flask with 3-4 nL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washi ngs to the separatory funnel.
(9) Repeat step (8) once. This flask is no longer needed.
(10) Repeat steps (2)-(6), EXCEPT use a fresh flask in step (3), and do not incl ude the emul si on Iayer in step (5).
b. Concentration
(1) Add 3-4 boiling chi ps to the flask fromstep 2.a(IO), and attach a Snyder col um.
(2) Concentrate the extract in a $60^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathrm{mL}$.
(3) Transfer the extract to a label ed concentrator tube,

2. Procedure for $\mathrm{CH}_{3} \mathrm{OH}$ or Redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ (conti nued)

b. Concentration
(4) Add a boiling chip to the tube and, usi ng the tube heater, concentrate the sample to > $0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
(5) Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GCI-Std sol ution to the extract, and mix on the Vortex Genie for 2 sec at setting 8-10.
(6) Transfer equal anounts of the extract to 2 GC vials, cap the vi al s, and I abel them
(7) Add "R" to label of one of the vial s fromstep (6), and store it as a reserve.
(8) With the other vi al fromstep (6), proceed to GC Anal ysi s (Section 12, page 85).
3. Procedure for Bl ank

Proceed as in Subsection 2 above, except omit the 100 mL of
$\mathrm{CH}_{3} \mathrm{OH}$ in step 2. a(1), and performonly a single anal ysis.

THIS PAGE INTENTIONALLY LEFT BLANK

B. 6: 4: 3 SQLVENT PURITY

1. Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and materials contacting the sol vent sample.

G assware

100-mL graduated cyl inder
2 ea 500-mL 24/40-STJ Erlenneyer flasks with stoppers
2 ea 3-bal I 24/40-ST] Snyder col ums
3 ea 25-mL 19/22-STJ Kontes concentrator tubes with stoppers
transfer pi pets (Pasteur style) with rubber bul bs
6 ea $2-\mathrm{mL}$ GC vi al s

Sol vents
200 mL 6: 4: 3 sol vent (Section 3, step B. 2, page 21)
3 mL redi stilled $\mathrm{CH}_{3} \mathrm{OH}$
21 mL hexane

GC Internal Standards (per sample)
$50 \mu \mathrm{~L}$ HB GC/I-Std sol ution
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution

Other Materials and Apparatus
water bath
boiling chips
nodified Kontes tube heater (Section 4A, Part 1, page 25)
100- $\mu \mathrm{L}$ syri nges
Vortex Geni e
500-mL Tefl on wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
2. Procedure for 6:4:3 Sol vent - Note: Anal yze duplicate sampl es pl us a bl ank
a. Transfer 100 mL of the 6: 4: 3 sol vent from Section 3, step B. 2 (page 21) to a flask.
b. Add 3-4 boiling chips, and attach a Snyder col um to the flask.
c. Concentrate the sample in a $75^{\circ} \mathrm{C}$ water bath to $10-15 \mathrm{~mL}$.
d. Transfer the sample to a concentrator tube (no $\mathrm{CH}_{2} \mathrm{O}_{2}$ washes!).
e. Add a boiling chip and 1 mL of redistilled $\mathrm{OH}_{3} \mathrm{OH}$ to the tube, and using the tube heater, concentrate the sample to $\mathbf{>} \mathbf{0 . 9} \mathbf{~ m L}$, < 1.0 mL .
f. Add 7 mL of hexane to the tube, and concentrate the sample to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
g. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol uti on to the sample, and $m i x$ on the Vortex Genie for 2 sec at setting 8-10.
h. Transfer equal anounts of the sample to 2 GC vials, cap the vials, and I abel them
i. Add "R" to the label of one of the vials fromstep h, and store it as a reserve.
j. With the other vial from step h, proceed to $\mathbf{G C}$ Anal ysis (Section 12, page 85).
3. Procedure for Blank
a. Prepare ablank by adding 1 mL of redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ and 7 mL of hexane to a tube.
b. Concentrate the sol vents to > $0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
c. Proceed as in steps 2. g-2.j above.

c. $\mathbf{C H}_{2} \mathrm{O}_{2}$ PURI TY

1. Equi pment List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and materials contacting the sample.

G assware

2 ea 500-mL TC graduated cylinders
3 ea 500-mL 24/40-STJ Erlenneyer flasks with stoppers
3 ea 3-bal I 24/ 40-STJ Snyder col ums
3 ea 25-mL 19/22-STJ Kontes concentrator tubes with stoppers
transfer pi pets (Pasteur style) with rubber bul bs
6 ea 2-mL GC vial s

Sol vents
$700 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ fromlot to be tested
$350 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ fromlot currently in use

GC Internal Standards (per sample)
$50 \mu \mathrm{~L}$ HB GCl-Std sol ution
$50 \mu \mathrm{~L}$ TCMK GCl-Std sol ution

Other Materials and Apparatus
water bath
boiling chi ps
nodified Kontes tube heater (Section 4A, Part 1, page 25)
$100-\mu \mathrm{L} \quad$ syri nges
Vortex Geni e
500-nL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
2. Procedure for $\mathrm{CH}_{2} \mathrm{O}_{2}$ - Note: Anal yze dupl i cate sampl es for each I ot to be tested, pl us a sample of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ lot currently in use.
a. Add $\mathbf{3 5 0} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{a}_{2}$ to a flask.
b. Add 3-4 boiling chips, and attach a Snyder col um to the flask.
c. Concentrate the sample in a $60^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathrm{mL}$.
d. Transfer the sample to a concentrator tube (no $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ washes!).
e. Add a boiling chip to the tube, and using the tube heater, concentrate the sample to > $0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
f. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol uti on to the sample, and mix on the Vortex Genie for 2 sec at setting 8-10.
g. Transfer equal anounts of the sample to 2 I abel ed GC vials, cap the vials, and Iabel them
h. Add "R" to the label of one of the vials fromstep g, and store it as a reserve.
i. With the other vial fromstep g, proceed to GC Anal ysis (Section 12, page 85).

D. PENTANE PURITY

1. Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and naterial s contacting the sample.

G assware

2 ea 100- mL TC graduated cylinders
3 ea 500-mL 24/40-STJ Erlenneyer flasks with stoppers
3 ea 3-bal I 24/40-ST] Snyder col ums
3 ea 25-nL 19/22-STJ Kontes concentrator tubes with stoppers transfer pi pets (Pasteur style) with rubber bul bs 6 ea 2- mL GC vi al s

Sol vents

200 mL pentane fromlot to be tested
100 mL pentane from lot currently in use

GC Internal Standards (per sampl e)
$50 \mu \mathrm{LHB}$ GC/I-Std sol ution
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution

Other Materials and Apparatus
boiling chips
nater bath
nodified Kontes tube heater (Section 4A, Part 1, page 25)
100- $\mu \mathrm{L}$ syri nges
Vortex Geni e
500-nL Teflon wash- bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
2. Procedure for Pentane - Note: Anal yze dupl icate sampl es for each I ot to be tested, plus a sample of a pentane lot currently in use.
a. Add $\mathbf{1 0 0} \mathbf{~ m L}$ of pentane to a flask.
b. Add 3-4 boiling chips, and attach a Snyder col um to the flask.
c. Concentrate the sample in a $55^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m}$.
d. Transfer the sample to a concentrator tube (no $\mathrm{CH}_{2} \mathbf{a}_{2}$ washes!).
e. Add a boiling chip to the tube, and using the tube heater, concentrate the sample to >0.9 mL, < 1.0 mL .
f. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to the sample, and mix on a Vortex Genie for 2 sec at setting 8-10.
g. Transfer equal anounts of the sample to 2 label ed G vials, cap the vi al s, and label them
h. Add "R" to one of the vials fromstep g, and store it as a reserve.
i. With the other vial fromstep g, proceed to GC Anal ysis (Section 12, page 85).

E. IEXANE PURITY

1. Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all gl assware and material s contacting hexane sample.
G assuare3 ea 25-nL 19/22-STJ Kontes concentrator tubes with stopperstransfer pi pets (Pasteur style) with rubber bul bs
6 ea 2-mL GC vi al s
Sol vents
50 mL hexane fromlot to be tested
25 mL hexane from lot currently in use
GC Internal Standards (per sample)
$50 \mu \mathrm{~L}$ HB GC/I-Std sol ution
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution
Other Materials and Apparatus
water bath
boiling chi ps
modified Kontes tube heater (Section 4A, Part 1, page 25)
100- $\mu \mathrm{L}$ syri nges
Vortex Geni e
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
2. Procedure for Hexane - Note: Anal yze dupl i cate sampl es for each I ot to be tested, pl us a sample of a hexane lot currently in use.
a. Add 25 mL of hexane to a concentrator tube.
b. Add a boiling chip to the tube, and using the tube heater, concentrate the sample to >0.9 $\mathbf{~ m L}$, $\mathbf{1 . 0} \mathbf{~ m L}$.
c. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to the sample, and mix on the Vortex Genie for 2 sec at setting 8-10.
d. Transfer equal anounts of the sample to 2 I abel ed GC vials, cap the vi al s, and label them
e. Add "R" to the Iabel of one of the vials fromstep d, and store it as a reserve.
f. With the other vial fromstep g, proceed to GC Anal ysis (Section 12, page 85).

SECTI ON 5

LOT TESTI NG CALI BRATI ON OF SI LI CA GEL/ ALUM NA

THIS PAGE INTENTIONALLY LEFT BLANK

LOT TESTI NG CALI BRATI ON OF SI LI CA GEL/ ALUM NA

A Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and materials

 contacting the silica gel and al unin.
G assware (per col um)

19-mm ID \mathbf{x} 30-cm chronat ography col um with reservoir
2 ea 250-mL beakers
2 ea 500-nL 24/ 40-STJ Erl enneyer flasks with stoppers
3-bal I 24/ 40- STJ Snyder col um
22 ea 25-mL 19/22-STJ Kontes concentrator tubes with stoppers
22 ea 2-mL GC vials
transfer pi pets (Pasteur style) with rubber bul bs

Reagents and Sol vents (per col umm)
20 g silica gel (heated to $700^{\circ} \mathrm{C}$ for 18 hr , stored at $170^{\circ} \mathrm{C}$, and cool ed to room temp. in a desi ccator just bef ore wei ghi ng and use)

10 g al umina (acti vated at $120^{\circ} \mathrm{C}$ for 2 hr , then cool ed to room temp. in a desi ccator j ust bef ore wei ghi ng and use)
7.5 cc activated copper (<1 hr bef ore use, activate copper by covering it with conc. HCl and stirring with a glass rod, then allowing it to stand for 5 min , followed by washing twice with $\mathrm{CH}_{3} \mathrm{OH}$ and then $3 x$ with $\mathrm{CH}_{2} \mathrm{O}_{2}$. Leave the copper covered with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to to avoid contact with air.)
ca. 1 cc sand, aci d- uashed (steeped in aqua regi a (ACS grades HNO_{3} : Hd , 1: 3, v: v) overni ght, then washed three ti mes each with $\mathrm{H}_{2} \mathbf{O}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried, and stored at $120^{\circ} \mathrm{C}$)
100 mL pentane
200 mL 1: $1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: pentane (v: v)
$210 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (not incl udi ng washes)
25 mL. $\mathbf{1 0 \%}$ redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v: v)
$30 \mathbf{m L} \mathbf{2 0 \%}$ redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v: v)
A. Equi pnent List (continued)

GC Internal Standards and Calibration Extracts
$50 \mu \mathrm{~L}$ HB GCI-Std sol ution (per SA fraction)
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution (per SA fraction)
silica-gel / al umina calibration extract: Extract 10 samples each of control (rel ati vely cl ean) sedi nent and of control mussel, per Sections 7 and 8, respectivel y. Combi ne the 20 extracts (2 mL . each), and add: (a) 10 mL of AH spi ke sol ution, (b) 1 mL of PES spike sol ution, and (c) coprostanol to give a final concentration of ca. $2 \mathrm{ug} / \mathrm{mL}$ (fi nal vol une ca. 55 mL).

Other Materials and Apparatus
desi ccat or
curved- stem funnel (curve gl assbl own)
pouder funnel
$2500-\mu \mathrm{L}$ and $100-\mu \mathrm{L}$ syri nges
glass nool
$0.6 \times 75-\mathrm{cm}$ gl ass rod
boiling chi ps
nodified Kontes tube heater (Section 4A, Part 1, page 25)
water bath
Vortex Geni e
500-mL Teflon wash- bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - filled)
B. Col um Preparation - Note: Laboratory temp. must be $<\mathbf{8 0}^{\circ} \mathrm{F}\left(\mathbf{2 7}^{\circ} \mathrm{C}\right)$

1. Prepare the col ums \mathbf{j} ust prior to use. On warm days proceed nore slow y to avoid vapor bubbles.
2. Fit a 19- $\mathbf{m m} I \mathrm{D}$ col um with a stopcock, add 100 mL of $\mathrm{CH}_{2} \mathrm{O}_{2}$ and a 5-15- mm gl ass- nool pl ug. Tamp the pl ug well to renove any bubbl es.
3. Add the al umina to a beaker, and slow y add 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
B. Col um Preparation (conti nued)

Gently swirl the beaker for 30 sec , and let it stand for 5 min (to renove all air bubbles) until used in step 6.
4. Add the silica gel to a 2 nd beaker. Sl owly add 40 mL of $\mathrm{CH}_{2} \mathrm{a}_{2}$ to the beaker. Gently swirl the beaker for 30 sec , and let it stand for 5 min (to renove all air bubbles) until used in step 9 .
5. Pl ace a curved- stem funnel into the col um reservoi r so that the funnel tip hangs well off-center.
6. Swirl the 1st beaker (from step 3) to resuspend the al uni na, and pour the slurry into the col um.
7. Whsh the beaker with ca. 5 mL of $\mathrm{CH}_{2} \mathrm{O}_{2}$, and add the washings to the col um. Repeat the wash twice. Pl ace the beaker under the col um.
8. After the particles settle, open the stopcock for 30 sec to allow the al umina to pack nore tightly, then close the stopcock.
9. Add the silica gel fromstep 4 to the col um, as in steps 6-7 for the al uni na.
10. After the silica gel has settled, open the stopcock. While the sol vent is still draining, add the sand and then the copper through the ponder funnel. Drain to the packing top, then close the stopcock.
11. Add 50 mL of pentane to the col um. Drain to the packing top, then close the stopcock. Discard the el uates collected thus far.

C. Col umn Cal i bration

1. Usi ng a $2500-\mu \mathrm{L}$ syringe, place 2 mL of the silica-gel/al umina cal i bration extract on top of the packing.
2. Pl ace a concentrator tube, I abel ed "SA1.1", beneath the col um.

C. Col um Cal ibration (conti nued)

3. Open the stopcock, and drain to the packing top, then close the stopcock.
4. From the remai ning 50 mL of pentane, add 0.5 mL to the packing. Open the stopcock. Drain to the packing top, then close the st opcock.
5. Repeat step 4 once.
6. Add the rest of the pentane to the col um, and el ute at ca. $3 \mathrm{~nL} / \mathrm{m} \mathrm{n}$ until $\mathbf{2 0} \mathrm{mL}$ has been collected in the tube. Cl ose the stopcock, and di scard the el uate (col um dead vol une).
7. Pl ace the tube under the col um agai n , and col lect 15 mL . Cl ose the stopcock, and set asi de the tube for step D. 6.
8. Replace the tube with a tube Iabel ed "SA1. 2", and collect 2.0 mL . Close the stopcock, and set aside the tube for step D. 6.
9. Using tubes label ed successively "SA1. 3"-"SA1. 11", repeat step 8 9 times, addi ng 200 mL of $1: 1 \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$: pentane (v: v) to the col um when the pentane in the col um drains to the packing top.
10. Repl ace the Iast tube from step 9 with a tube Iabel ed "SA2.1", and collect 20 mL of el uate. Cl ose the stopcock, and set aside the tube for step D. 6.
11. Usi $n g$ tubes label ed successi vel y "SA2. 2"-"SA2. 10", repeat step 10 ni ne times ($9 x$), adding $\mathbf{5 0} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{C}_{2}$ when the $\mathrm{CH}_{2} \mathrm{O}_{2}$: pentane in the col um drains to the packing top.
12. Replace the last tube in step 11 with a "waste" flask, and drain the remai $n i n g$ sol vent to the packing top.
13. Add 25 mL of $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the col um, and drain to the packi ng top at ca. $2 \mathrm{~mL} / \mathrm{min}$. Cl ose the stopcock.
D. Col um Cal i bration (conti nued)
14. Di scard the contents of the waste flask and replace it with a flask label ed "SA3".
15. Add 30 mL of $20 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the col um and el ute all of the sol vent into the SAB-I abel ed flask.
D. Fraction Concentration
16. Add 3-4 boiling chips and attach a Snyder colum to the flask from step C. 15.
17. Concentrate the fraction in a $70^{\circ}-75^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m L}$.
18. Transfer the fraction to a label ed concentrator tube.
19. UAsh down the flask with $\mathbf{3 - 4} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{O}_{2}$, and add the washi ngs to the tube.
20. Repeat step 4 once.
21. Add a boiling chip to each tube from steps C.7-D.5, and using the tube heater, concentrate each fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
22. Add 7 mL of hexane to the SA3 fraction and 2 mL of hexane to each renai ning tube. Concentrate each fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
23. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to each fraction, and mix each on the Vortex Genie for 2 sec at setting 8-10.
24. Transfer each fraction to a label ed GC vial, cap the vial, and proceed to GC Anal ysi s (Section 12, page 85).
25. From the GC anal yses, establish the el ution vol unes for the SA1, SA2 and SA3 fractions, such that: all al kanes el ute in the SA1 fraction; coprostanol and androstanol el ute in the SA3 fraction; and all other anal ytes and internal standards present el ute in the SA2 fraction.

THIS PAGE INTENTIONALLY LEFT BLANK

SECTI ON 6
SEPHADEX LH 20 COLUMN PREPARATI ON AND CALI BRATI ON

THIS PAGE INTENTIONALLY LEFT BLANK

SEPHADEX LH 20 COLUMN PREPARATI ON AND CALI BRATI ON
A. Equi pnent List - Note: $\underset{\text { the }}{\mathrm{CH}_{2} \mathrm{O}_{2} \text { - wash }}$. all glassware and materials contacting the sample.
G assware (per col um cal ibrated with azul ene/ peryl ene)
19- mm ID $\times \mathbf{3 0 - c m}$ chronat ography col umm with reservoir 100-mL TC graduat ed cyl inder

Addi ti onal G assware (per col um calibrated with sedi nent/tissue calibration extract)

2 ea 50-mL TC graduated cylinders
500-mL 24/40-STJ Erl enneyer flask with stopper
22 ea 25-mL 19/22-STJ Kontes concentrator tubes with stoppers
22 ea 2-mL GC vial s
transfer pi pets (Pasteur style) with rubber bul bs
3-bal I 24/40-STJ Snyder col um

Reagents and Sol vents (per col um cal ibrated with azul ene/ peryl ene)
80 cc swelled Sephadex LH 20 (suel Ied overni ght in 6: 4: 3 sol vent), pl us 50 mL . additional 6:4:3 sol vent
2. 5 cc sand, acid-washed (Section 5, Part A, page 39)

350 mL 6: 4: 3 sol vent

Addi ti onal Reagents and Sol vents (per col um calibrated with sedi ment/ tissue calibration extract)

200 mL 6: 4: 3 sol vent
hexane and redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ (as needed)

GC Internal Standards and Calibration Extracts
$50 \mu \mathrm{~L}$ HB GC/I-Std sol ution (per fraction)
$50 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution (per fraction)

A Equi pnent List (conti nued)

GC Internal Standards and Calibration Sol utions
Azul ene/ peryl ene cal i bration sol ution: Add enough azul ene (ca. $10 \mathrm{ng} / \mathrm{mL}$) and perylene (ca. $1 \mathrm{ng} / \mathrm{mL}$) to ca. 50 mL of 6:4:3 sol vent to produce a deepl y col ored sol ution. Make sure that the azul ene and peryl ene are compl etel y di ssol ved.

Sedi nent/tissue cal ibration extract: Extract 10 sampl es each of control sedi ment and of control mussel tissue, per Sections 7 and 8, respectivel y. Chromat ograph these sampl es- on silica gel/al uni na, per Section 10. Conbine the 20 SA2 fractions (2 mL each) from Section 10, step E. 2, page 75, and add: (a) 1 mL of PES spi ke sol ution, and (b) 10 mL of AH spi ke sol ution to the conbi ned fractions. Concentrate this to 10 mL , and add sufficient $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{O}_{2}$ to make a 6: 4: 3 hexane: $\mathrm{CH}_{3} \mathrm{OH}_{\mathbf{C H}} \mathrm{Cl}_{2}$ sol ution.

Other Materials and Apparatus
curved- stem funnel (curve gl assbl own)
glass nool
W Ii ght (USS' 11 Mneral ight)
$2500-\mu \mathrm{L}$ and $100-\mu \mathrm{L}$ syri nges
boiling chips
nodified Kontes tube heater (Section 4A, Part 1, page 25)
water bath
Vortex Geni e
$0.6 \times 75-\mathrm{cm}$ glass rod
al uni num foil
500-mL Teflon wash- bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
B. Col um Preparation

1. Fit a 19-mm ID col um with a stopcock, add 10 mL of 6:4:3 sol vent and a $5-10-\mathrm{mm}$ gl ass- nool pl ug. Tamp the pl ug to renove any air bubbl es.
2. Add ca. 1 cc of sand to the col um, and tap the col umn gently so that the sand forns a snooth layer on top of the gl ass nool.
B. Col um Preparation (conti nued)
3. Pour the swelled Sephadex gel through the funnel into the col um until the gel fills the col um and about $1 / 4$ of the reservoir.
4. Al low $\mathbf{1 0} \mathbf{m i n}$ for the Sephadex to settle. Open the stopcock, and el ute 80 mL of sol vent to ensure firmpacking. Add more sol vent as needed. Leave $\mathbf{3 0} \mathbf{~ m L}$ of sol vent in the col um reservoi r . Cover the top with al umin foil, and allow the packing to settle overni ght.
5. Open the stopcock, and el ute 10 mL of sol vent, then close the stopcock. Renove the excess Sephadex packing from the top with a transfer pi pet until the hei ght of the Sephadex is 26.5 cm
6. Gently add ca. 1 cc of sand onto the packing so that it forns an even layer on the top. e col um nay be tapped or tilted slightly to get an even layer of sand.)
7. Examine the packing for ai r bubbles. If bubbles are evi dent, el ute ca. 250 mL of warm (ca. $35^{\circ} \mathrm{C}$) sol vent through the col um. If the bubbles persist, recycle the packing (Part F, page 52).
C. Col um Cal i bration with Azul ene/ Perylene (Al Col ums)
8. Pl ace a $\mathbf{1 0 0} \mathbf{- m L}$ cylinder beneath the col um.
9. Using a transfer pipet, cautiously renove any excess 6: 4: 3 sol vent from the top of the packing.
10. Using a transfer pipet, cautiously apply 2 mL of the azul ene/ peryl ene cal i bration sol ution onto the col umn. Use a circular notion to di spense the sol ution j ust above the packing, and drip the sol ution sl ow down the col um wall so as not to di sturb the packing.
11. Open the stopcock, drai n to the packi ng top, and close the stopcock.
C. Col um Cal ibration with Azul ene/ Peryl ene (A I Col ums) (conti nued)
12. Add ca. 0.5 mL of sol vent to the top of the col um. Drain to the packing top, and close the stopcock.
13. Repeat step 5 once.
14. Add $\mathbf{1 0 0} \mathbf{~ m L}$ of sol vent, and open the stopcock.
15. El ute the sol vent until all of the perylene has energed, using the UV Iight to nonitor the perylene. Record the vol unes at which the azulene and perylene start and finish el uting.
16. If the azul ene energes in the 50-65 mL range, and the peryl ene energes in the $60-80 \mathrm{~mL}$ range without distinct tailing on the packing, proceed to step 10. Otherwise, recycle the packing (Part F, page 52).
17. Di scard the el uate. Add 50 mL of sol vent to the col um, and flush the packing by el uting $\mathbf{5 0} \mathbf{m L}$ into the cylinder. Agai n, di scard the el uate.
18. The col um is now ready for the next sample.

Note: If the col um is to be stored, nai ntain $\mathbf{3 0 - 5 0 m L}$ of sol vent in the col um reservoi r, and cover the top with al uni num foil. Renove the sol vent if it separates into 2 phases, add 80 mL of fresh sol vent, and el ute 50 mL .
D. Col um Cal ibration with Sedi ment/Tissue Cal ibration Extract

1. Set asi de one representati ve col umn for every $\mathbf{1 0}$ col ums made. Renove any excess 6:4:3 sol vent with a transfer pipet.
2. Whsh the col um tip with $\mathrm{CH}_{2} \mathrm{C}_{2}$, and place a $\mathbf{5 0} \mathbf{- m L}$ cylinder under the col um.
3. Usi ng a transfer pi pet, cautiously apply $\mathbf{2} \mathbf{~ m L}$ of sedi ment/ ti ssue cal ibration extract onto the col um. Use a circular notion to dispense the extract j ust above the the packing, dripping it sl ow down the col um wall so as not to di sturb the packing. Drain to the packing top, and cl ose the stopcock.
D. Col um Cal ibration with Cal ibration Extract (continued)
4. Add ca. 0.5 mL of sol vent to the col umn. Drain to the packing top, and close the stopcock. Repeat this step once.
5. Add $\mathbf{2 0 0} \mathrm{mL}$ of sol vent to the col um, and collect 25 mL of el uate in the cylinder. Close the stopcock, and di scard the el uate.
6. Pl ace a concentrator tube I abel ed "L1. 0 " under the col um, and collect 5.0 mL of el uate. Cl ose the stopcock, and set aside the tube for step E. 3
7. Pl ace a concentrator tube label ed "L1. 1" under the col um, and collect 1.0 mL of el uate. $\underline{\text { l ose the stopcock, and set aside the }}$ the tube for step E. 3.
8. Repeat step 7 fourteen times (14x), labeling the successive fractions "L1. 2" through "L1. 15".
9. Repl ace the last tube with a $\mathbf{5 0}$ - mL cylinder I abel ed "L2. 0 ", and collect 50 mL of el uate. Cl ose the stopcock, and transfer the el uate to a flask label ed "L2.0".
10. Whsh down the cylinder with 3-4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washi ngs to the flask. Repeat this step once.
11. Set the flask aside for step E. 1 and the cylinder for step 14.
12. Pl ace a concentrator tube I abel ed "L2. 1" under the col um, and collect 10 mL of el uate. Cl ose the stopcock, and set asi de the tube for step E. 3.
13. Repeat step 12 four times ($4 x$), I abel ing the successive fractions "L2. 2" through "L2.5".
14. Repl ace tube "L2.5" with the cylinder fromstep 11, and flush the packing by el uting $\mathbf{5 0} \mathbf{~ m L}$ of sol vent. Discard this el uate.

E. Fraction Concentration

1. Add 3-4 boiling chips to the flask from step D. 11, attach a Snyder col um, and concentrate the fraction in a $75^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m}$.
2. Transfer fraction L2. 0 to a label ed concentrator tube. Whsh down the flask with 3-4 nL of $\mathrm{CH}_{2} \mathrm{C}_{2}$, and add the washings to the flask. Repeat the wash once.
3. Add 1 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and a boiling chip to each tube fromsteps $\mathrm{D} .7-\mathrm{E} 2$.

Using the tube heater, concentrate each fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
4. Add 7 mL of hexane to each tube, and concentrate to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
5. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to each fraction.
6. Mx each fraction on the Vortex Genie for $2 \mathbf{s e c}$ at setting 8-10.
7. Transfer each fraction to a label ed GC vial and proceed to GC Anal ysis (Section 12, page 85).
8. Verify by GC anal ysis that the anal ytes are separated fromlipids.

Establish the el ution vol unes so as to leave all anal ytes and internal standards present in the L2 fraction.
F. Recycle of Col um Packing - Note: This is an optional procedure which requi res additional equi pnent as descri bed bel ow

Summary: Decant any sol vent in the col um reservoi r. Enpty the col umm packing into a beaker 4 times the vol une of the packing. Wish with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Add enough $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to fl oat the Sephadex particles in the upper hal f of the beaker. Renove al I glass nool with forceps (n andatory). Cover the beaker and let it stand for $\mathbf{1 - 2} \mathbf{h r}$. Decant the floating particles into a fritted-glass funnel attached to an aspirator, I eavi ng the sand in the beaker. Aspi rate the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from the Sephadex particles, and set them asi de. Suel I these particles overnight in 6: 4: 3 sol vent before reusing.

SECTI ON 7

SEDI MENT EXTRACTI ON

THIS PAGE INTENTIONALLY LEFT BLANK

SEDI MENT EXTRACTI ON

A. Equi prent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and naterials contacting the sample or extract.

G assuare (per sample)
250-nL tunbl er/centrifuge bottle (anber, Boston round) with Teflon cap (Savillex, 24- mm)

500-mL 24/ 40-STJ Erlenneyer flask with stopper
25-nL. 19/22-STJ Kontes concentrator tube with stopper
3- bal I 24/ 40-STJ Snyder col um
ponder funnel (use nore than 1, if needed)

Sol vents and Reagents (per sample)
$300 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (not incl udi ng washes)
$50 \mathrm{~g} \mathrm{Na} \mathbf{2} \mathrm{SO}_{4}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ - washed, dried, stored at $120^{\circ} \mathrm{C}$, and cool ed to room temp. in a desi ccator bef ore wei ghi ing and use)
hexane (as needed)

I nternal Standards and Spi ke Sol utions
AH I-Std, PES I-Std, COP I-Std, AH spi ke, PES spi ke, and COP spi ke sol utions

Other Materials and Apparatus
1 spatula per sample
nodi fied rock tunbler (Mbdel NF-1, Lortone Inc., 2856 NW Market St., Seattle, WA 98107; belt guard is renoved)
centrifuge (to accommodate the tunbler/centrifuge bottles)
naski ng tape
desi ccat or
boiling chi ps
$1000-\mu \mathrm{L}$ and $100-\mu \mathrm{L}$ syri nges
A. Equi pnent List (conti nued)

4 ea 2-mL GC vials
nodified Kontes tube heater (Section 4A, Part 1, page 25)
water bath
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2-\mathrm{filled}}$)
B. Sample Extraction

1. Decant the excess water from the sedi ment, and stir it to honogeni ze. Di scard al pebbles, seaweed, hood, crabs, etc.
2. Using a spatula and pouder funnel, wei gh $10 \pm 0.5 \mathrm{~g}$ of sedi ment to the nearest 0.01 g into a tared bottle. Record the wei ght in the log book.
3. Set asi de ca. 10 g of the honogeni zed sedi ment for the Dry Wei ght Determination (Section 9, page 65). St ore the remaining sample in a freezer.
4. Centrifuge each sample bottle at ≤ 1500 rpm for 5 min. Decant and discard the $\mathrm{H}_{2} \mathrm{O}$.
5. To each sediment sample add: (a) 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (b) $100 \mu \mathrm{~L}$ of AH I-Std solution, (c) $100 \mu \mathrm{~L}$ of PES I-Std solution, and (d) 100 LL of COP I-Std solution. Make certain that the solutions are placed into the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
6. For each set of sampl es prepare a spi ked bl ank ("reagent spi ke") by addi ng to an empty bottle: (a) 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (b) $100 \mu \mathrm{~L}$ of AH I-Std sol ution, (c) $100 \mu \mathrm{~L}$ of PES I-Std sol ution, (d) $100 \mu \mathrm{~L}$ of COP I-Std sol ution, (e) $100 \mu \mathrm{~L}$ of PES spike sol ution, (f) $100 \mu \mathrm{~L}$ of AH spike sol ution, and (g) $100 \mu \mathrm{~L}$ of COP spike sol ution.
B. Sample Extraction (conti nued)
7. If the sample set requires a field blank ("sedi nent blank"), prepare this by washing down the empty sedi nent sample contai ner 3 times with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ each time and adding the conbi ned washi ngs to a bottle. Add 70 mL nore of $\mathrm{CH}_{2} \mathrm{O}_{2}$ to the bottle and proceed as in the next step starting at (b).
8. For each set of sampl es prepare a bl ank ("reagent blank") by addi ng to an empty bottle: (a) 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (b) $100 \mu \mathrm{~L}$ of AH I-Std sol ution, (c) $100 \mu \mathrm{~L}$ of PES I-Std sol ution, and (d) $100 \mu \mathrm{~L}$ of COP I-Std sol ution.
9. Prepare 2 AH PES anal yte-cal i bration sol utions (f or Section 11, step F. 4, page 83) by adding to each of 2 vi al s: (a) $600 \mu \mathrm{~L}$ of hexane, (b) $100 \mu \mathrm{~L}$ of AH spi ke sol ution, (c) $100 \mu \mathrm{~L}$ of AH I-Std sol ution, (d) $100 \mu \mathrm{~L}$ of PES I-Std sol ution, and $\{\mathrm{e}$) $100 \mu \mathrm{~L}$ of PES spike sol ution.
10. Prepare 2 COP anal yte-calibration sol utions (for Section 10, step G.4, page 76) by adding to each of 2 vials (a) $800 \mu \mathrm{~L}$ of hexane, (b) $100 \mu \mathrm{~L}$ of COP I-Std sol ution, and (c) $100 \mu \mathrm{~L}$ of COP spi ke sol ution.
11. Add 50 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to each bottle in steps 5-8.
12. Screw each bottle cap on $\mathrm{j} u \mathrm{st}$ tight enough to prevent leakage.

Note: Do not overtighten so as to deform the cap and cause I eakage.
13. Tape the cap to the bottle crosswi se over the top with 2 strips of nasking tape.
14. Manually shake each bottle until the contents are loose, then roll for 16 hr (i.e., overnight) on the tumbler at 100-250 rpm
B. Sampl e Extraction (continued)
15. Renove the tape from each bottle. If the sample does not i medi ately settle, centrifuge it at < 1500 rpm for 5 min.
16. Decant each extract into a label ed flask.
17. Add 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to each sampl e, and repeat steps 12-15, except roll each bottle for 6 hr (i.e., during the day).
18. Decant the 2nd extract into the flask from step 16.
19. Repeat step 17, except roll each bottle for 16 hr (i.e., overni ght).
20. Add the 3 rd extract fromstep 19 to the flask from step 18
C. Extract Concentration

1. Add $\mathbf{3 - 4}$ boiling chi ps to the flask contai ning the $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{2}$ extract from step B. 20, and attach a Snyder col um.
2. Concentrate the extract in a $60^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m L}$, and transfer it to a label ed concentrator tube.
3. Uash down the flask with $\mathbf{3 - 4} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{C}_{2}$, and add the washi ngs to the tube.
4. Repeat step 3 once.
5. Add a boiling chip to the tube, and using the tube heater, concentrate the extract to $\geq 0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
6. Add 3 mL of hexane to the tube, and concentrate the extract to 2 mL on the tube heater.
7. Proceed to Silica Gel / Al umina Chronatography (Section 10, page 69).

SECTI ON 8

TI SSUE EXTRACTI ON

THIS PAGE INTENTIONALLY LEFT BLANK

TISSUE EXTRACTI ON

A Equi pnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and material s contacting the sample or extract.

G assuare (per sample)
100-mL centrifuge tube with Teflon-lined cap
500-mL 24/ 40-STJ Erl enneyer flask with stopper
25-mL 19/22-STJ Kontes concentrator tube with stopper
3-bal I 24/ 40- STJ Snyder col um

Sol vents and Reagents (per sample)
$80 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{C}_{2}$ (not incl udi ng washes)
hexane (as needed)
$25 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{CH}_{2} \mathrm{O}_{2}\right.$ - washed, dried, stored at $120^{\circ} \mathrm{C}$, and cool ed to room temp. in a desi ccator j ust before wei ghi ng and use)

I nternal Standards and Spi ke Sol utions
AH I-Std, PES I-Std, AH spike, and PES spi ke sol utions

Other Materials and Apparatus
1 spatula per sample
Teknar Ti ssumi zer
desi ccat or
centrifuge (to accomodate the $100-\mathrm{mL}$ centrifuge tubes)
boiling chi ps
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
$1000-\mu \mathrm{L}$ and $100-\mu \mathrm{L}$ syringes
2 ea $\mathbf{2 - m L}$ GC vials
water bath
nodified Kontes tube heater (Section 4A, Part 1, page 25)
Vortex Geni e
Teflon sheeting (to line centrifuge bottle caps)

B. Sample Extraction

1. Using a spatula, and being careful to place the sample on the bottom and not the sides, weigh $3+0.5 \mathrm{~g}$ of sample to the nearest 0.01 g into the centrifuge tube. Set aside ca. 1 g for Dry Vei ght Determination (Section 9, page 65). Record the wei ght in the log book.
2. Store the remaining sample in a freezer.
3. To each tissue sample in a centrifuge tube add: (a) $\mathbf{3 5} \mathbf{~ m L}$ of $\mathbf{C H}_{2} \mathbf{C l}_{\mathbf{2}}$, (b) $20 \mu \mathrm{~L}$ of AH I-Std sol ution, and (c) $20 \mu \mathrm{~L}$ of PES I-Std sol ution. Make certain that the sol utions are pl aced into the $\mathbf{C H}_{2} \mathbf{d}_{2}$.
4. For each set of samples prepare a spi ked blank ("reagent spi ke") by adding to a centrifuge tube containing 35 mL of $\mathrm{CH}_{2} \mathrm{C}_{2}$: (a) $20 \mu \mathrm{~L}$ of AH I -Std sol ution, (b) $20 \mu \mathrm{~L}$ of PES I-Std sol ution, (c) $20 \mu \mathrm{~L}$ of AH spike sol ution, and (d) $20 \mu \mathrm{~L}$ of PES spi ke sol ution.
5. If the sample set requires a field blank ("tissue blank"), prepare this by washing down the enpty sample container 3 times with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ each tine and adding the conbi ned washi ngs to an enpty centrifuge tube. Add 5 mL nore of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the tube, and proceed as in the next step starting at (b).
6. For each set of samples prepare a bl ank ("reagent blank") by addi ng to an empty centrifuge tube: (a) 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (b) $20 \mu \mathrm{~L}$ of AH I-Std sol ution, and (c) $20 \mu \mathrm{~L}$ of PES I-Std sol ution.
7. Prepare 2 AH PES anal yte-cal i bration sol utions (for Section 11, step G.5, page 83) by adding to each of 2 vial s: (a) $900 \mu \mathrm{~L}$ of hexane, (b) $20 \mu \mathrm{~L}$ of AH I-Std sol ution, (c) $20 \mu \mathrm{~L}$ of PES I-Std sol ution, (d) $20 \mu \mathrm{~L}$ of AH spike sol ution, and (e) $20 \mu \mathrm{~L}$ of PES spi ke sol ution.
B. Sample Extraction (conti nued)
8. Add $\mathbf{2 5} \mathrm{g}$ of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to each tube fromsteps 3-6.
9. Macerate/ extract the sample in the tube for 1 min with the Tissumizer at setting 100. Then continue at setting 50 for 2 min . Avoid spattering the tissue.
10. Whsh down the probe with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, collecting the washings in the centrifuge tube.
11. Centrifuge the sample for 5 min at < 2000 rpm
12. Decant the extract into a label ed flask.
13. Add 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the tube.
14. Repeat steps 9-12 once.
15. Wish the $\mathrm{Na}_{2} \mathrm{SO}_{4} /$ sample nass by adding 10 mL of $\mathrm{CH}_{2} \mathrm{O}_{2}$ to the tube, and mixing on the Vortex Genie for $5-10$ seconds at setting 5-6.
16. Repeat steps 11-12 once.
c. Concentration of Extract
17. Add 3-4 boiling chi ps, and attach a Snyder col um to the flask cont ai ning the $\mathrm{CH}_{2} \mathrm{C}_{2}$ extract fromstep B .16 .
18. Concentrate the extract in a $60^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0} \mathbf{- 1 5} \mathbf{~ m}$, and transfer it to a concentrator tube.
19. Uash down the flask with $3-4 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washings to the tube.
20. Repeat step 3 once.
21. Add a boiling chip to the tube, and using the tube heater, concentrate the extract to > $0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
22. Add 3 mL of hexane to the tube, and concentrate the extract to 2 mL on the tube heater.
23. Proceed to Silica Gel / Al umina Chronatography (Section 10, page 69).

THIS PAGE INTENTIONALLY LEFT BLANK

SECTI ON 9

THIS PAGE INTENTIONALLY LEFT BLANK

DRY VEI G-T DETERM NATI ON

A Equi pnent List

anal ytical bal ances (requi renents in steps B. 4 and C. 3)
spat ul a(s)
al uni num wei ghi ng pan(s)
al uni num foil, 12-inch width
drying oven ($120^{\circ} \mathrm{C}$)
desi ccat or
forceps
B. Sedi nent Procedure

1. Etch the sample number on the tab of the wei ghing pan.
2. Pl ace up to 3 al uni num pans on $1 / 2$ of a 9 - inch strip of al uni num foil. Fold the al umi num foil over the weighing pan(s) to form an envel ope. Close the envel ope, but do not seal it, then place it in the drying oven overni ght.
3. Cool the envel ope containing the pan in a desiccator for $\mathbf{3 0} \mathbf{m i n}$.
4. Renove the pan from the envel ope, and wei gh the pan to the nearest 0.01 g . Record the pan wei ght as the Tare Veight in the \log book.
5. Stir the sedi ment with a spatula to honogenize it, and di scard all pebbl es, bi ota, detritus, etc.
6. Add $10 \pm 0.5 \mathrm{~g}$ of the sedi ment to the pan.
7. Record the wei ght to the nearest 0.01 g in the \log book as the Wet Wei ght.
8. Ret urn the wei ghing pan to the foil envel ope, and cl ose the envel ope, but do not seal it.
9. Dry the sample in the drying oven for $\mathbf{2 4} \mathbf{h r}$.
10. Renove the sample from the oven, and cool it in the desi ccator for 30 min .
B. Sedi ment Procedure (conti nued)
11. Rewei gh the sample, and record the dry wei ght to the nearest 0.01 g in the Iog book as the Dry Vei ght.
C. Tissue Procedure
12. Proceed as in steps B.I-B.4, except use forceps to handle the pan and wei gh the pan to the nearest 0.1 ng .
13. Wth a spatula, spread ca. 0.5 g of tissue onto the pan.
14. Record the weight to the nearest 0.1 ng in the \log book as the Wét Wei ght.
15. Proceed as in steps B. 8-B. 11, except use the forceps to handle the pan and record the wei ght to the nearest 0.1 ng .
D. Dry Wei ght Cal cul ation
16. Cal cul ate Dry V \% as follons:

$$
\text { Dry Vt \% }=\frac{\text { Dry Wêi ght }- \text { Tare Vêi ght }}{\text { Wet Wêi ght - Tare Wêi ght }} \times 100 .
$$

SECTI ON 10

SI LI CA GEL/ ALUM NA CHROMATOGRAPHY

THIS PAGE INTENTIONALLY LEFT BLANK

SI LI CA GEL/ ALUM NA CHROMATOGRAPHY

A. Equipnent List - Note: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and naterials contacting the extract or fractions.
G assuare (per sample)

19- mm ID $\mathbf{3 0 - c m}$ chronat ography col umn with reservoi r
2 ea $\mathbf{2 5 0}-\mathrm{mL}$ beakers
50- mL TC graduated cyl inder
500-mL 24/40-STJ Erl enneyer flask with stopper*
2 ea* 25-mL 19/ 22-STJ Kontes concentrator tubes with stoppers
2 ea* transfer pi pets (Pasteur style) with rubber bul bs
3-bal I 24/40-STJ Snyder col um*
2- mL GC vi al *

Reagents and Sol vents (per sample)
20 g silica gel (heated to $700^{\circ} \mathrm{C}$ for 18 hr , stored at $170^{\circ} \mathrm{C}$, and cool ed to room temp. in a desi ccator just before wei ghi ng and use)

10 g al umina (acti vated at $120^{\circ} \mathrm{C}$ for 2 hr , then cool ed to room temp. in a desi ccat or j ust bef ore wei ghi ng and use)

160/ $210 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ for ti ssue/ sedi nent, resp. (not incl udi ng washes)
25 mL $\mathbf{1 0 \%}$ redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v: v), for sedi ment only
$30 \mathrm{~mL} \mathbf{2 0 \%}$ redi stilled $\mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (v: v), for sedi ment only
50 mL pentane t the anount cal ibrated in Section 5 to el ute the col um dead vol une + the SAl fraction
mL of 1: $1(\mathrm{v}: \mathrm{v}) \mathrm{CH}_{2} \mathrm{C}_{2}$: pentane (the anount calibrated in Section 5 to el ute the SA2 fraction)
hexane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and redistilled $\mathrm{CH}_{3} \mathrm{OH}$, as needed
ca. 1 cc sand, acid washed (Section 5, Part A, page 39)
7.5 cc activated copper (Section 5, Part A, page 39), for sedi nent only

[^1]A. Equi pnent List (conti nued)

GC Internal Standards
$50 \mu \mathrm{~L}$ HB GCI-Std sol ution per SA3 fraction
$10 \mu \mathrm{~L}$ TCMK GC/I-Std sol ution per SAl fraction
Other Materials and Apparatus
desi ccat or
pouder funnel
curved- stem funnel (curve gl assbl own)
$0.6 \times 75-\mathrm{cm}$ glass rod
gl ass nool
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{C}_{2}$-filled)
boiling chips
nodified Kontes tube heater (Section 4A, Part 1, page 25)
water bath
Vortex Geni e
$100-\mu \mathrm{L}$ and $10-\mu \mathrm{L}$ syringes
B. Col um Preparation - Note: The Iaboratory temp. must be $<\mathbf{8 0}^{\circ} \mathbf{F}\left(27^{\circ} \mathrm{C}\right)$

1. Prepare the col ums \mathbf{j} ust prior to use. On narm days proceed more slow y to avoid vapor bubbl es.
2. Fit a 19- mmID col um with a stopcock, add 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and a 5-15- mm gl ass- nool pl ug. Tamp the pl ug well to renove any bubbles.
3. Add the al unina to a beaker, and slow y add 20 mL of $\mathrm{CH}_{2} \mathrm{~d}_{2}$. Gently swirl the beaker for 30 sec , and let it stand for 5 min (to renove all air bubbles) until used in step 6.
4. Add the silica gel to a 2nd beaker. Sl ow y add $\mathbf{4 0} \mathbf{~ m . ~ o f ~} \mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}}$ to the beaker.
B. Col um Preparation (conti nued)
5. Gently swirl the beaker for $\mathbf{3 0} \mathbf{~ s e c}$, and let it stand for $\mathbf{5 m i n}$ (to renove all air bubbles) until used in step 10.
6. Pl ace a curved- stem funnel into the col um reservoir so that the funnel tip hangs nell off-center.
7. Swi rl the beaker to resuspend the al uni na from step 3, and pour the sl urry into the col um.
a. Wish the beaker with ca. 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washi ngs to the col um. Repeat the wash twice, then place the beaker under the col um tip.
8. After the particles settle, open the stopcock for 30 sec to allow the al umina to pack nore tightly, then close the stopcock.
9. Add the silica gel fromstep 4 to the col um, as in steps $\mathbf{7 - 8}$ for the al umina.
10. After the particles settle, open the stopcock. While the sol vent still drains, add the sand through the ponder funnel (for sedi ments: then add the copper). Drain to the packing top, then close the st opcock.
11. Add 50 mL of pentane to the col um. Drain to the packing top, then cl ose the stopcock. Di scard the el uates collected thus far.
c. Chromatography of Extract
12. Whsh the col um tip with $\mathrm{CH}_{2} \mathrm{O}_{2}$, renove the waste beaker from beneath the col um, and repl ace it with a cylinder.
13. With a transfer pipet, cautiously transfer the sedi ment extract (Section 7, step C. 6, page 58) or the tissue extract (Section 8, step C.6, page 63) to the top of the packing. Drain to the packing top, then cl ose the stopcock.
c. Chronatography of Extract (continued)
14. From the renai ni ng pentane, wash down the tube that contai ned the extract with 0.5 mL , and add the washi ngs to the top of the packing. Drain to the packing top, then close the stopcock.
15. Repeat step 3 once.
16. Whsh down the tube with ca. 0.5 mL of the $1: 1 \mathrm{CH}_{2} \mathrm{Q}_{2}$: pentane, and hol d the washings in the tube for step 13.
17. From the remai nder of the pentane, add ca. 2 mL to wash down the col um wall. Drain to the packing top, then close the stopcock.
18. Repeat step 6 once.
a. Add the rest of the pentane, and continue el uting at ca. $\mathbf{3} \mathbf{~ m L} / \mathbf{m i n}$.
19. Collect 20 mL of el uate, then close the stopcock, and di scard the contents of the cylinder.
20. Repl ace the cylinder with a concentrator tube I abel ed "SA1". Partially open the stopcock and continue el uting until __ mave been collected (the anount calibrated in Section 5 for fraction SA1), then close the stopcock.
21. Set asi de the SA1-I abel ed tube for step E. 1, page 75.
22. Pl ace a flask label ed "SA2" under the col umn. Drain to the packing top, then close the stopcock.
23. Add the washi ngs from the tube (set aside in step 5) to the top of the packing. Drain to the packing top, then cl ose the stopcock.
24. Whsh down the tube with 0.5 mL of the $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: pentane, and add the washi ngs to the top of the packing. Drain to the packing top, then cl ose the stopcock.
25. Add the remai ning 1: $1 \mathrm{CH}_{2} \mathrm{O}_{2}$: pentane to the col um, and partially open the stopcock. Drain to the packing top and close the stopcock.
26. Set asi de the SA2-label ed flask for step F. 1, page 75.
D. For Sedi ment Onl y
27. Pl ace a "uaste" flask under the col um, and add $\mathbf{5 0} \mathbf{~ m L}$ of $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{2}$ to the col um. Drain to the packing top, and cl ose the stopcock.
28. Add $\mathbf{2 5} \mathbf{~ m L}$ of $10 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{O}_{2}$ to the col um. Drain to the packing top at ca. $2 \mathrm{~mL} / \mathrm{min}$, and close the stopcock.
29. Di scard the contents of the waste flask, and repl ace the flask with one label ed "SA3".
30. Add 30 mL of $20 \% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to the col um. El ute al I of the sol vent into the SA3-I abel ed flask, and set it aside for step G. 1, page 76.
E. Concentration of Fraction SAI
31. Add a boiling chip to the tube fromstep C. 11, and using the tube heater, concentrate the SAl fraction to > $0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
32. Add 2 mL of hexane to the tube, and concentrate the fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
33. Add $10 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to the tube, and mix for $\mathbf{2}$ set on the Vortex Genie at setting 8-10.
34. Transfer the concentrate into a GC vial, label it as "SA1", cap the vial, and store it in the freezer until needed.
F. Concentration of Fraction SA2
35. Add 3-4 boiling chips to the SA2-I abel ed flask from step C. 16, and attach a Snyder col um.
36. Concentrate the SA2 fraction in a $60^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m L}$, and transfer it to a concentrator tube.
37. Wash down the flask with 3-4 mi of $\mathbf{C H}_{2} \mathrm{O}_{2}$, and add the washi ngs to the tube. Repeat this step once.

F. Concentration of Fraction SA2 (conti nued)

4. Continue concentrating the SA2 fraction in the same manner as the SA1 (steps E. 1- E. 2) .
5. Add appropriate anounts of $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{O}_{2}$ to make $\leq 2.3 \mathrm{~mL}$ of a sol ution of 6:4:3 hexane: $\mathrm{CH}_{3} \mathrm{Ot}_{\mathbf{C H}}^{\mathbf{C H}_{2}} \mathbf{2}$ ($v: \mathrm{v}: \mathrm{v}$).
6. Proceed to Sephadex LH 20 Chronatography (Section 11, page 77).
G. Concentration of Fraction SA3 (Sedi ment Onl y)
7. Concentrate the fraction in the SA3-I abel ed flask from step D. 4 in the sane nanner as for Fraction SA2 (steps F.1-F.4), except use a 75° C bath in step 1 , and add 7 mL of hexane in step 2.
8. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution to the tube, and mix for 2 set on the Vortex Genie at setting 8-10.
9. Transfer the concentrate into a GC vial, label it as "SA3", and cap the vial.
10. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution to the COP anal yte-calibration sol ution vials from Section 7, step B. 10 (page 57).
11. Proceed to GC Anal ysi s (Section 12, page 85), and anal yze for coprostanol.

SECTI ON 11
6: 4: 3 SEPHADEX LH 20 CHROMATOGRAPHY

THIS PAGE INTENTIONALLY LEFT BLANK

6: 4: 3 SEPHADEX LH 20 CHROMATOGRAPHY

A. Equi pnent List - Note: $\quad \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - wash all glassware and naterial s contactingthe extract or fractions.
G assware (per sample)
50- mL TC graduated cylinder
100-nL TC graduated cyl inder
500-mL 24/ 40-STJ Erlenneyer flask with stopper
3- bal I 24/ 40- STJ Snyder col um
2 ea 25-mL 19/22-STJ Kontes concentrator tubes with stoppers
transfer pi pets (Pasteur style) with rubber bul bs
3 ea 2 - mL GC vials (substitute 1 conical vial for tissue extract)
Sol vents (per sample)
200 mL 6: 4: 3 cycl ohexane: $\mathrm{CH}_{3} \mathrm{Ot}_{\mathbf{C H}}^{2} \mathrm{C}_{2}$ sol ution (v: v: v)
2 mL redi stilled $\mathrm{CH}_{3} \mathrm{OH}$
GC Internal Standards (per SA2-L2 or SA2-L1 fraction)
HMB GC/I-Std sol ution: $50 \mu \mathrm{~L}$ (sedi nent L2); $10 \mu \mathrm{~L}$ (ti ssue L2)
TCMK GC/I-Std sol ution: $50 / 10 \mu \mathrm{~L}$ (sedi ment L2/L1); 10/ $10 \mu \mathrm{~L}$
(ti ssue L2/ L1)
Other Materials and Apparatus
al uni num foil
activated copper (Section 5, Part A, page 39)
Vortex Geni e
cal ibrated Sephadex LH 20 col ums (Section 6, page 45)
boiling chi ps
water bath
nodified Kontes tube heater (Section 4A, Part 1, page 25)
500-mL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2-\mathrm{filled}}$)
syri nges: $\quad 100-\mu \mathrm{L} \quad$ (sedi ment) ; $10-\mu \mathrm{L} \quad$ (ti ssue)
B. Speci al I nstructions

1. The extract must be di ssol ved in the sol vent (no layers), with the total vol une $\leq 2.3 \mathrm{~mL}$.
2. The fraction vol unes are dependent on the col umn calibration. Occasi onally check the col um calibration (Section 6, page 45).
3. When renovi ng or addi ng sol vent (or extract), extrene care must be used to avoid di sturbing the col umm packing.
4. During col um storage, maintain $\mathbf{3 0 - 5 0} \mathbf{~ m L}$ of the sol vent in the col umn reservoir and cover the top with al umin foil to minime evaporation. If the sol vent in the reservoir separates into 2 phases, renove it and replace it with > $\mathbf{8 0} \mathbf{~ m L}$ of fresh 6: 4: $\mathbf{3}$ sol vent, then e-lute 50 mL .
c. Chronat ography
5. Renove the excess sol vent from the top of the col umn using a transfer pipet.
6. Add $\mathbf{1 0} \mathbf{~ M L}$ of the 6: $\mathbf{4}: \mathbf{3}$ sol vent to the col um. Drain to the packing top, and cl ose the stopcock. Di scard the el uate.
7. Whsh the col um tip with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and pl ace the $\mathbf{5 0} \mathbf{- m L}$ cylinder under the col um.
8. Using a transfer pi pet, carefully apply the 2-mLextract from Section 10, step F. 5 (page 76) to the col umn. Use a ci rcul ar notion to di spense the sample imedi ately above the packing, dripping it sl ow down the col um wall so as not to di sturb the packing.
9. Drain to the packing top, and cl ose the stopcock.
10. Kish down the tube with 0.5 mL of the sol vent, and apply the washings to the col um. Drain to the packing top, and close the stopcock.
C. Chronat ography (conti nued)
11. Repeat step 6 once.
12. Whsh down the col um wall with ca. 3 mL of the sol vent, applied above the base of the reservoir. Drain to the packing top, and cl ose the stopcock.
13. Repeat step 8 once.
14. Cautiously add ca. 150 mL of the sol vent to the col um (add nore as needed) without di sturbing the packing.
15. Col lect 25 mL of el uate in the 50 mL cylinder. Close the stopcock, and di scard this el uate.
16. Repl ace the cyl inder with a concentrat or tube I abel ed "SA2-L1". Open the stopcock, collect __n of el uate (the anount calibrated in Section 6 for fraction SA2-L1), then close the stopcock.
17. Set aside the SA2-LI-I abel ed tube for step D.I, page 82.
18. Pl ace the $100-\mathrm{mL}$ cyl i nder I abel ed "SA2-L2" under the col um. Open the stopcock, and collect n. of el uate (the anount cal i brated in Section 6 for fraction SA2-L2). Close the stopcock, and transfer the el uate to a flask label ed "SA2-L2".
19. Whsh down the cylinder with $3-4 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washings to the flask.
20. Repeat step 15 once, and set the flask asi de for step E. 1 , page 82.
21. Repl ace the $\mathbf{1 0 0} \mathbf{- m L}$ cylinder with a waste cylinder, and el ute 50 mL of sol vent to fl ush the col um. Discard this el uate.
22. The col um is now ready for the next sample.

D. Concentration of Fraction SA2-L1

1. Add 1 mL of $\mathrm{CH}_{3} \mathrm{OH}$ and a boiling chip to the tube fromstep C . 13, and using the tube heater, concentrate the SA2-L1 fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
2. Add 7 mL of hexane to the tube, and concentrate the fraction to $>0.9 \mathrm{~mL},<1.0 \mathrm{~mL}$.
3. Add $10 \mu \mathrm{~L}$ of $\mathrm{TCMK} \operatorname{GC} / \mathrm{I}$-Std sol ution to the tube, and mix for 2 sec on the Vortex Geni e at setting 8-10.
4. Transfer the fraction to a $\mathbf{G C}$ vial, cap the vial, label it, and store it in the freezer until needed.

E. Concentration of Fraction SA2-L2

1. Add 3-4 boiling chips to the flask from step C. 16, and attach a Snyder col um.
2. Concentrate the SA2-L2 fraction in a $75^{\circ} \mathrm{C}$ water bath to $\mathbf{1 0 - 1 5} \mathbf{~ m L}$, and transfer it to a concentrator tube.
3. Whsh down the flask with $\mathbf{3 - 4} \mathbf{~ m L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and add the washings to the tube. Repeat this step once.
4. Continue concentrating the SA2-L2 fraction in the same manner as the SA2-L1 (steps D. 1- D. 2).
5. Proceed to step F. 1 for sedi ment or step G 1 for tissue.
F. Fraction SA2-L2 from Sedi ment
6. Add a few grains of acti vated copper to the tube from step E. 5 until no further di scol oring occurs, then stopper the tube and and let it stand overnight in a refrigerator.
7. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to the tube. $M x$ on the Vortex Genie for 2 sec at setting 8-10.
F. Fraction SA2-L2 from Sedi ment (conti nued)
8. Transfer equal anounts of the fraction to 2 GC vials, cap the vi al s, and I abel them
9. Add $50 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution to the AHP PES anal yte-calibration sol ution vials from Section 7, step B. 9 (page 57). Si milarly, add $50 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to these vials.
10. Add "R" to the Iabel of one of the vial s fromstep 3, and store it in a freezer as a reserve. Proceed with the other vi als from steps 3 and 4 to GC anal ysis (Section 12, page 85).
G. Fraction SA2-L2 from Ti ssue, EXCEPT Contaminated Li vers (see Part H)
11. Add $\mathbf{1 0} \mu \mathrm{L}$ of HMB GC/I-Std sol ution and $\mathbf{1 0} \mu \mathrm{L}$ of TCMK GCI-Std sol ution to the tube from step E. 5 (page 82).
12. Mx on the Vortex Genie for $\mathbf{2}$ sec at setting 8-10.
13. Transfer $\mathbf{1 / 2}$ of the fraction to a $\mathbf{G C}$ vial, cap the vial, and Iabel it.
14. Add " R " to the vial label, and store the vial in a freezer as a reserve. Set aside the tube for step 7.
15. Add $10 \mu \mathrm{~L}$ of HMB GC/I-Std sol ution and $10 \mu \mathrm{~L}$ of TCMK GC/I-Std sol ution to the anal yte-calibration sol ution vial from Section 8, step B. 7 (page 62), and set them aside for step 8 or Part H (page 84).
16. Using a pi pet, transfer a portion of tissue fraction SA2-L2 fromstep 4 to a conical $\mathbf{G C}$ vial. Place this vi al under a gentle stream of nitrogen gas (pi ped through onl y $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - washed Teflon, stai nl ess-steel, or glass tubing), and slow y evaporate 1/2 of the sol vent.
G. Fraction SA2-L2 from Tissue (conti nued)
17. Repeat step 6 until the entire contents of the tube have been transferred to the coni cal $\mathbf{G C}$ vial. The vol une of the concentrated fraction shoul d be ca. 0.1 mL .
18. Cap the vial, and label it. Proceed to GC Anal ysis (Section 12, page 85) with the I abel ed vial, plus the anal yte-calibration sol ution vial s from step 5 (page 83).
H. Fraction SA2-L2 from Li ver Tissue - Note: This Part is for livers that are noderatel y to heavily contani nated with PCBs or DDTs.
19. Proceed as in steps G1-2 (page 83), and in step G 5 above.
20. Transfer ca. 0.1 mL of Fraction SA2-L2 into a conical GC vial. Cap the vial and label it. Proceed to GC Anal ysis (Section 12, page 85) with the label ed vial, plus the anal yte-calibration sol ution vials fromstep G. 5 (page 83).
21. Pl ace the remai ning Fraction SA2-L2 in a regul ar GC vial, add "R" to the label, and store the vial in a freezer as a reserve.
I. Recycle of Col um Packing - Note: When the col um no I onger nai ntains its cal i bration with azul ene/ peryl ene, recycle the packing according to Section 6, Part F (page 52).

SECTI ON 12
GC ANALYSI S

THIS PAGE INTENTIONALLY LEFT BLANK

GC ANALYSI S

A. Equi pnent List - Note: Whsh the aut osampler syringe thoroughl y with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ bef ore usi ng.

Gas Chronat ogr aph (GC), Hew ett-Packard nodel 5880A, i ncl udi ng: capillary col um inl et system in the Nb . 2 position
aut osampl er
cartridge tape unit
flame-i onization detector (FID), in the No. 1 position
el ectron-capture detector (ECD), in the No. 2 position
nodifications: The graphite 0 ring is placed around the injector insert instead of a Viton Oring. A Viton Oring is installed beneath the septum A sl ot is cut in 2 ea $1 \times 1-i n c h, 1 / 32$-inch thick al umi num plates so that they may be inserted from opposite si des around the injection port, just above the gas lines, and between the sept um retai ner assenbly and the insert retai ner assembly. A $1 / 16$-inch tube is installed to blow compressed air gently onto the cooling fins.

Cal i bration Sol utions
AH GC-cal ibration-check sol ution
PES GC-cal i bration- check sol ution
COP GC-cal i bration- check sol ution

Gas Cylinders and Apparat us
ai r, Ohio breathing ai r, CGA Grade E (or equi val ent)
argon/ net hane, 95: 5 ($\mathrm{v}: \mathrm{v}$)
helium grade 4.5 (purified, > 99.995\%
hydrogen, grade 5 (ultra pure, > 99.999\%)
ni trogen, grade 4.5 (purified, > 99.995\%)
nol ecul ar si eve traps (1 for each gas cylinder), Hydro- Purge nodel ASC-1, Coast Engi neering Laboratory, Gardena, Cal ifornia
regul ators (1 for each gas cylinder), 2-stage
oxygen traps, J \& W Scientific, Inc.
A. Equi pnent List (conti nued)

Sol vents
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$, as needed

Other Materials and Apparatus
GC col um, J \& W Scientific Inc., fused silica, DB-5, 30-m
di anond-tip etcher
2 ea ferrules, J \& W Scientific Inc., 0.4-mmgraphite, part no. 500-2004
j ewel er's loupe, 10x
typewriter correction fluid (e.g., Wite-Out)
I eak detector, Snoop, Nupro Co.
sept um Altech Associ ates, 3/8-i nch, bl ue, stock no. 6514
O-ring, Viton O.208-inch ID, Parker Seal Co.
brush for cleaning fused-silica liner
gl ass nool, as needed
10- $\mu \mathrm{L}$ syringe, Hamilt on nodel 701 N
2-mL GC vi al s, Varian, part no. 96-000099-00
100- μ l coni cal GC vi al s, Wheat on, part no. 986281
flowneter suitable for all gases used
soap
1/8-i nch OD copper tubi ng
Swagel ok adapters, as needed
1/8-i nch Suagel ok tee
I/8-inch Swagel ok connectors, as needed
B. Col um Instal I ation for FID Operation (conti nued)

1. Place a col um on the rack hol der in the GC oven so that one end faces the injector and the other faces the detector (FID).
2. Slide the col umn nut over the injector end of the col um.
3. Using the di anond-tip etcher, score the col um lightly about $1 \mathbf{c m}$ from the col um end, then snap of f the col um tip at the etched point.
4. Slide the ferrule over the inlet end of the col um.
5. Etch the col um agai n ca. 2 mm bel ow the previ ously cut end, and snap off the $2 \mathbf{m m}$ above the etched point.
6. Examine the end with the j ewel ers loupe; if it is not snooth (cl ean cut) and perpendi cul ar to the col um sides, repeat step 5.
7. SI ide the col umn nut up the col um until only 35 mm of col um extends beyond the base of the ferrule.
8. With Wite-Out, place a white nark on the col um even with the base of the col um nut.
9. Slide the col um into the injector, and tighten the nut by hand until the col um is held lightly in place.
10. Adj ust the col um so that the white nark is again even with the base of the nut, then tighten the nut j ust sufficiently that no gas escapes when tested with a leak detector.
11. Tighten the nut an additional $1 / 4$ turn.
12. Repeat steps 2-6, but on the detector end of the col um.
13. Slide the col um nut up the col um until 57 mm of the col um extends beyond the ferrule, then repeat step 8.
14. SIide the col um into the FID, and tighten the nut by hand until the col um is held lightly in place.
15. Repeat steps 9-10.

C. Col um Instal Iation for ECD Operation

1. Repeat steps B. 1-12.
2. Slide the col umn nut up the col umn until only 47 mm of the col um extends beyond the ferrule.
3. Repeat steps B. 13-15, except use the ECD instead of the FID.
D. Injector Mai ntenance
4. Cool the injector and the oven to near room temp, then loosen the col um nut at the injector block.
5. Di sconnect the air from the autosampler, and renove the sample tray.
6. Make sure that the aut osampler door is closed and the carrier gas pressure is rel eased, then tilt the autosampler back.
7. If the gases are not al ready installed, proceed to Part Efirst. Otherwise, turn of the cooling air and the carrier gas ("carrier C/ D' val ve).
8. Renove the septum retaining nut. Discard the septumif it is worn. Check the Oring, and replace it if it is worn or cracked.
9. Unscrew the lower injector cover, and withdraw the fused-silica liner.
10. Discard the O-ring. Using a snall stiff brush, wash inside and outside of the liner with soap and water.
11. Fl ush the liner thoroughly with water.
12. Hold the liner with a clamp, and wash it with $\mathrm{CH}_{3} \mathrm{OH}$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
13. After the liner has dried, use a pair of snall forceps and a snall glass rod to place a $5-\mathrm{mm}$ lightly-packed, glass-nool plug into the liner, and push it 35 mm bel ow the sept um end of the liner.
14. Instal I a new Oring.
15. SIide the O-ring onto the injector liner, and place the Iiner into the injector, taking care to slide the col um into the liner.
D. Inj ector Mai ntenance (conti nued)
16. Reattach the injector cover, replace the O-ring on top of the injector cover, and replace the septum on top of the 0 ring.
17. Screw on the septum retaining nut, and adjust the cooling fins.
18. Turn on the cooling air, and retighten the col umn nut at the injector.
19. Adj ust the carrier gas pressure to 20 psi.
20. Return the injector temperature to $300^{\circ} \mathrm{C}$ and the oven temperature to $180^{\circ} \mathrm{C}$.
E. Installation of Gases for FID
21. Attach a 2-stage regulator to a full nitrogen cylinder.
22. Connect a nol ecular-si eve trap to the nitrogen regul ator.
23. Connect the trap to the "Aux 2" (nake-up gas connector) gas port in the back of the $G C$, using $1 / 8$ - inch OD copper tubing and Swagel ok connectors.
24. Open the nitrogen-cylinder val ve, and adj ust the output pressure to 50 psi .
25. Check all connections of the nitrogen del ivery system with leak detector, and tighten or repl ace any that leak.
26. Adj ust the Aux 2 pressure to $\mathbf{3 0} \mathbf{~ p s i}$ on the gauge on the front panel of the GC.
27. Attach a 2-stage regulator to a full hydrogen cylinder.
28. Connect a nol ecular-si eve trap to the hydrogen regul ator.
29. Connect the trap to the hydrogen gas port in the back of the GC, using 1/8-i nch OD copper tubing and Swagel ok connectors.
30. Open the gas cylinder val ve, and adj ust the output pressure to 55 psi.
31. Repeat step 5 with the hydrogen del ivery system
E. Instal I ation of Gases for FID (conti nued)
32. Adj ust the hydrogen pressure to 30 psi on the gauge on the front panel of the GC.
33. Attach a 2-stage regul ator to a full helium cylinder.
34. Connect a nol ecular-si eve trap and an oxygen trap to the hel i um regul ator.
35. Connect the trap to the "carrier C/D' gas port in the back of the GC, using 1/8-inch OD copper tubing and Swagel ok connectors.
36. Open the hel ium cylinder val ve, and adj ust the output pressure to 40 psi .
37. Repeat step 5 with the hel $i u m$ del i very system
38. Adj ust the carrier-gas pressure to 20 psi on the "carrier C/D' gauge on the front panel of the GC.
39. Attach a 2-stage regulator to a full air cylinder.
40. Connect a nol ecular-si eve trap to the air regulator.
41. Connect a $\mathbf{1 / 8}$ - i nch Swagel ok tee to the outlet of the trap. Connect one end to the autosampler and the other end to the "ai r" gas port in the back of the G C, using $1 / 8$-i nch $\mathbf{O D}$ copper tubing and Suagel ok connectors.
42. Open the air-cylinder val ve, and adjust the output pressure to 75 psi.
43. Repeat step 5 with the air delivery system
44. Adj ust the air pressure to 30 psi on the gauge on the front panel of the GC.
45. Attach the high-flow line from the gas flowneter to the split vent.
46. Adj ust the split vent flow to $\mathbf{4 0} \mathbf{m L} / \mathrm{min}$ with the " C " flow val ve.
47. Attach the lowflow line from the gas flowneter to the sept um purge vent.
E. Instal I ation of Gases for FID (conti nued)
48. Adj ust the septum purge flow to ca. $10 \mathrm{~mL} / \mathrm{min}$ with the sept um purge val ve.
49. Make sure that the injector split vent flowis still $40 \mathrm{~mL} / \mathrm{min}$.
50. Detach both flowneter lines.
F. Installation of Gases for ECD
51. Attach a 2-stage regul ator to a full argon/ methane cylinder.
52. Connect a nolecular-si eve trap and an oxygen trap to the argon/ net hane regul at or.
53. Connect the oxygen trap to the "Aux 2" (nake- up gas) gas port in the back of the GC, using $\mathbf{1 / 8}$ - inch $\mathbf{O D}$ copper tubing and Suagel ok connectors.
54. Open the argon/ methane cylinder val ve, and adj ust the regul at or output pressure to 60 psi.
55. Adj ust the "Aux 2" pressure to 30 psi on the gauge on the front panel of the GC.
56. Check al connections with leak detector, and tighten or replace any that leak.
57. Repeat steps E. 13-23 and E. 25-30 (pages 92 and 93), making certain that the ai \mathbf{r} val ve on the front of the $\mathbf{G C}$ renai $n s$ turned of f.
G. Entering and Storing the GC Program "ROUTI NE" (expl anatory notes on right nargin in parentheses)
58. Press the CLEAR ENTRY button on terminal 1.
59. Press the ENTER button on terminal 1.
60. Type the following lines (letters will appear capitalized in the GC printout), and press the RETURN button after each line:
G. Entering and Storing the GC Program "ROUTI NE" (conti nued)
10 option base 1
20 rem overni ght sample runs
25 gosub 1300 (set up autosampler infornation)
30 di ms(25)
40 for $\mathbf{i = 1}$ to 2
$50 \mathrm{~s}(\mathrm{i})=0$
60 next i
70 input "total number of samples to run", n (enter the number of GCvi al sto be anal yzed)
80 If $\mathrm{n}<26$ then 110
90 print "naxi mum of 25 sampl es al lowed"
100 got 070
110 input "enter starting bottle number",b
120 for $\mathbf{i}=1$ to n
$130 \mathrm{~s}(\mathrm{i})=\mathrm{b}$
$135 \mathrm{~b}=\mathrm{b}+2$
140 print "enter sample name for bottle \#';s(i) (enter sample name)
145 if i>14 then 151
150 on i got o 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 420
151 on i-14 got o 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640
152 print "on goto error - line 150-151"
153 goto 2000
160 input as a\$
170 goto 660
180 input b\$
190 goto 660
200 i nput c\$
G. Entering and Storing the GC Program "ROUTI NE" (continued)
210 goto 660
220 i nput d\$
230 goto 660
240 i nput e\$
250 goto 660
260 i nput f\$
270 goto 660
280 i nput g\$
290 goto 660
300 input h\$
310 goto 660
320 input i\$
330 goto 660
340 input j \$
350 goto 660
360 input k\$
370 got 0660
380 i nput I\$
390 goto 660
400 input $\mathbf{n} \$$
410 goto 660
420 input n\$
430 goto 660
440 input 0\$
450 goto 660
460 input p\$
G. Entering and Storing the GC Program "ROUTI NE" (conti nued)
470 goto 660
480 input $\mathbf{q} \$$
490 goto 660
500 input r\$
510 got 0660
520 i nput s\$
530 goto 660
540 input t $\$$
550 goto 660
560 i nput u\$
570 goto 660
580 input v\$
590 got o 660
600 input W\$
610 got 0 660
620 input x\$
630 goto 660
640 i nput y\$
660 next
670 input "which anal ysis file to use", z\$ (get GC conditionsfrom Anal ysis File
680 execute x, "get anal ysis """\& \$\$\&"" devi ce\# 6" on tape)
685 if $x<0$ then 2000
690 For $\mathbf{i = 1}$ to n
(print sample naneon chart)
695 wai t
696 list
700 print using 710; "sampl e: "
G. Entering and Storing the GC Program "ROUII NE" (conti nued)
710 i mage \#, 10/, 5x, 8a
720 inage $x, 50 a, 2 /$
725 if $\mathbf{i} \mathbf{~} \mathbf{1 4}$ then 731
730 on i got 0 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000
731 on i-14 got o 1020, 1040, 1060, 1080, 1100, 1120, 1140, 1160, 1180, 1200
732 print "on goto error in line 730"
733 goto 2000
740 print using 720; \mathbf{a} \$
750 goto 1230
760 print using 720; b\$
770 goto 1230
780 print using 720; $\mathbf{c} \$$
790 goto 1230
800 print using 720; $\mathbf{d} \$$
810 goto 1230
820 print using 720; e\$
830 goto 1230
840 print using 720; f \$
850 goto 1230
860 print using 720; \mathbf{g} \$
870 goto 1230
880 print using 720; $\mathbf{h} \$$
890 goto 1230
900 print using 720; \mathbf{i} \$
910 got 0 1230
920 print using 720; $\mathbf{j} \$$
G Entering and Storing the GC Program "ROUTI NE" (conti nued)
930 goto 1230
940 print using 720; \mathbf{k} \$
950 goto 1230
960 print using 720; 1 \$
970 got 0 1230
980 print using 720; $\mathbf{n} \$$
990 goto 1230
1000 print using 720; \mathbf{n} \$
1010 goto 1230
1020 print usi ng 720; o\$
1030 goto 1230
1040 print usi ng 720; p\$
1050 goto 1230
1060 print using 720; \mathbf{q} \$
1070 goto 1230
1080 print using 720; r\$
1090 goto 1230
1100 print using 720; s\$
1110 goto 1230
1120 print using 720; t\$
1130 goto 1230
1140 print using 720; u\$
1150 goto 1230
1160 print using 720; v\$
1170 goto 1230
1180 print using 720; w
G. Entering and Storing the GC Program "ROUTI NE" (conti nued)
1190 goto 1230
1200 print using 720; \mathbf{x}
1210 got 0 1230
1220 print using 720; \mathbf{y}
1230 rem
1240 val ve 6 on (cl ose inl et-purge val ve;i nj ect next GC sample)

1260 if $\mathrm{x}<0$ then 2000
1270 start auto seq s(i),s(i)
1280 next i
1290 oven temp initial val ue 180
1300 execute x, "edit auto seq $1, \mathbf{2 "}^{\prime \prime}$
1310 if $\mathbf{x}<0$ then 2000
1320 execute x, "edit auto seq 2,0
1330 if $\mathbf{x}<0$ then 2000
1340 execute x "edit auto seq 3,5
1350 if $\mathbf{x}<0$ then 2000
1360 execute x, "edit auto seq 4,l"
1370 if $\mathbf{x}<0$ then 2000
1380 execute x, "edit auto seq 5,l"
1390 if $\mathbf{x}<0$ then 2000
1400 execute x, "edit auto seq $9,1 \mathbf{O}^{\prime \prime}$
1410 if $x<0$ then 2000
1420 return
2000 end
save prgm "routi ne" devi ce\# 6.
H. Entering/ Storing Anal ysi s File HEXANE [or HEXANE EC] (or HEXANE CON-I)

Note: The options for GC anal ysis files are:
HEXANE, for 1-mL GC/FID samples;
HEXANE EC, for GC/ECD sampl es, use brackets [];
HEXANE CON-I, for 0.1-mL GC/ FID samples, use parentheses ().

1. Press the CLEAR ENTRY button on terminal 1.
2. Press the ENTER button on terminal 1.
3. Type the following lines (letter will appear capitalized in the GC printout), and press the RETURN button after each line. oven temp linit 320
oven temp 50
oven temp on
det 1 temp Iinit $325 \quad$ [det 2 temp limit 325)
det 1 temp 320
det 1 temp on
[det 2 temp 320]
del 1
[det 2 temp on]
inj 2 temp limit 320
inj 2 temp 300
inj 2 temp on
detector b on [detector \mathbf{c} on]
del ete run tbl
run tbl on
run tbl annotation on
run time 0.50 val ve 6 off
run time 80.0 stop [run time 105.5 stop]
si gnal B devi ce\# 12 [si gnal c devi ce\# 12]
si gnal on devi ce\# 12
stop pl ot device\# 12
chart speed 0.70 devi ce\# 12

H Entering/ Storing Anal ysi s File HEXANE [or HEXANE EC] (or HEXANE
CON I I) (conti nued)
attn $2 \uparrow 2$ devi ce\# 12 attn $2 \uparrow 8$ device \#12] (attn $2 \uparrow$ - 1 devi ce \#12)
\%ffset 10 devi ce\# 12
zero on devi ce\# 12
intg si gnal B [intg si gnal c]
sync off
run time annotation on
oven temp equib time 1.00
del et e oven temp
oven temp initial tine $\mathbf{3 . 0 0}$
oven temp 1 prgm rate 4.00
oven temp 1 final val ue 300 [oven temp 1 final val ue 170]
oven temp 1 final time 10.00 [oven temp 1 final time 0.00]
[oven temp 2 prgm rate 1.00]
oven temp annotation on [oven temp 2 final val ue 210]
val ve 6 off
[oven temp 2 final time 0.00]
[oven temp 3 prgm rate 4.00]
[oven temp 3 final val ue 300]
peak width 0.04
[oven temp 3 final tine 10.00]
threshol d - 3
[threshold 6]
report on devi ce\# 0
report on
report annotation on
del ete report tbl
report time 0.00 reject $1 e+16$
report time 1.00 bl mode 0
report tine 5.00 reject 0.1 [report time 5.00 reject 100]
area\%
del ete calib
H. Entering and Storing Anal ysis File HEXANE [or HEXANE EC] (or HEXANE

CON-I) (conti nued)
edit calib 0, l
edit calib-1,5
edit calib-2,5
edit calib-3, 0
edit calib-4,""
edit calib-5, 0
save anal ysis "hexane" devi ce \#6 [save anal ysis "hexane ec" devi ce\# 6]
(save anal ysis "hexane con-l" devi ce\# 6)
I. Verification of Stable GC Performance - Note: The options for anal ysis files: HEXANE (for GC/FID check); HEXANE EC (for GC/ECD check).

1. Place 6 vi al s containing the desi red GC-calibration-check sol ution in the first 6 odd- numbered slots of the aut osampler.
2. Pl ace hexane-filled wash-vials in the even- numbered slots following each GC-cal i bration-check sol ution vial.
3. Press the GET and PRGM buttons, then type "routine" (incl udi ng the quotation marks; letters will appear capitalized).
4. Press the following buttons: DEV CE\# 6 and RETURN After typing the correct response to each question that is asked, press the RETURN button. For anal ysis file option, see Note above.
5. Use the 6th GC injection to cal cul ate the anal yte peaks in the previ ous calibration runs as if they were unknowns (Part K, page 104).
6. The GC is operating properly if the deviation between calibrations is $<5 \%$ for any anal yte standard peak in calibrations \#3-\#6. If this criterion is not met, troubl eshoot, adjust or repair the GC instrument, and repeat steps $\mathbf{1 - 5}$ until the criterion is net.

J. GC Anal yses of Extract Fraction Concentrates

1. If there are $\mathbf{n} \mathbf{G C}$ sampl es to be anal yzed, let \mathbf{q} be the next I arger integer than [n/4 + 3]. Take 1 of the 2 anal yte-calibration \{AC) vials accompanying the fractions, and di vide its contents into q subsamples in conical GC vials.
2. Label these $A C$ conical (ACC) vials sequentially with the sample no. pl us "-Al", "-A2", "-A3", etc. Si milarly prepare 1 conical vial from the 2nd AC vial, and label it with the sample no. pl us "-B". Cap these ACC vials, and use them to cal ibrate the GC for anal ysis of the corresponding set of sample extract fractions.
3. Load the GC-sample and ACC vi als into the odd- numbered slots of the autosampler tray, as follows (col um by col um) :

initial group	repeating group (as needed)	final group
hexane bl ank	(sample no.-A2)	sample no.-Aq-1
sample no.-B	((hexane bl ank)	hexane bl ank
sample no .-Al)	sampl e bl ank
hexane bl ank	(sampl e no.)	sample no.
sample no. (1st)	(' sampl e no.')	sample no.
sampl e no. (2nd)	()	sampl e spi ke
sample no. (etc.)		sample no. - Aq
sample no.		GC-cal i b. - check

4. Pl ace hexane-filled wash vials in the even- numbered slots.
5. Press the GET and PRGM buttons, then type: "routine" (i ncl udi ng the quotation marks; letters will appear capitalized).
6. Press the following buttons: DEV CE\#, 6 and RETURN Type the correct response to each question asked, then press the RETURN button. For the anal ysis file option, see the Note in Part H (page 100).

K. GC Repeatability and Calibration Mxture Verification

To assess the repeatability, use the 3rd ACC vial (sample no. -A2) as the reference for cal culating the rel ative responses of the other ACC vi al anal yses. Do this by cal culing for each anal yte the ratio of the response factor in an ACC anal ysis to that for the ACC reference anal ysis, and express the result as a percent. The response factor for an indi vidual anal ysis is defined as R2/R3, using the definitions of R2 and R3 shown for Equation 12-1, page 108. If the ACC reference anal ysis is denoted with a "o", then the ratio of the response factors, expressed as a percent reduces to:

$$
100 \times \mathrm{R}_{2}{ }^{\circ} \times \mathrm{R}_{3} / \mathrm{R}_{3}{ }^{\circ} \times \mathrm{R}_{2}
$$

where the undenoted R_{2} and R_{3} stand f or the corresponding paraneters of the ACC anal ysis being compared to the ACC reference anal ysis. A devi ation > 5\% from 100\% indi cates a problem with the GC system (e.g., a leaking septum a loose ferrule, or a worn out or dirty col umm). Such problens should be rectified before proceeding with anal yses of the extract fractions.

To check the integrity of the sol utions in the ACC vials, cal cul ate for each anal yte the ratio of the response factor for the GC-calibration-check sol ution to that of the last ACC vial (sample no. - Aq). Use the sane formula gi ven above, except the Iast ACC vi al takes the pl ace of the undenoted ACC vi al and the GC-calibration-check sol ution vi al takes the place of the ACC reference vial, with appropriate changes in the definitions of the $R_{2}{ }^{\circ}$ and $R_{3}{ }^{\circ}$ paraneters (i.e., substitute "GC-cal ibration-check sol ution" for "ACC reference vial "). A devi ation $\mathbf{>} \mathbf{5 \%}$ from $\mathbf{1 0 0 \%}$ indicates a problem with the sol ution in the last ACC vi al (sample no.-Aq), and perhaps with the other ACC vi als al so.
L. Anal yte and I-Std Cal cul ati ons

Identify the anal yte peaks in the chronatograns of the extract fractions by comparing them with the anal yte retention times obtai ned from the chronat ogram of the ACC reference vi al. Fractions anal yzed by GC/ECD that show the presence of PCBs will have PCB peaks in addition to those corresponding to the PCB standards. Representative extracts need to be anal yzed by GC/MS to identify these peaks and verify the other anal ytes indicated by retention tine comparisons.

The GC/MS chronatograns are used to label the peaks in the $G C / E C D$ chronatogram Generally, the GC/MS is not as sensitive as the GC/ECD, so the fraction nay need to be concentrated to as little as $20 \mu \mathrm{~L}$ for GC/MS anal ysis. Anal yze a tenfold concentrated AC sol ution for the chl orinated compounds listed in Table 12-1. Determine the sum (Σ) of the sel ected i on areas (A) and the total ion current (TIC) for each analyte. Cal cul ate the response ratio for each anal yte standard by the equation: $\mathrm{RR}=\mathrm{TIC} / \mathrm{CA}$

For a multicomponent GC/MS peak, estimate the percent of each anal yte using the areas of the sel ected ions indicated in Table 12-1. For example, for a 2 -component G peak containing anal ytes x and y (peak $x+y$), set the MS data systemto determine the sum (Σ) of the ion areas (A) for anal yte $x \quad$ (ΣA_{x}) and anal yte $y \quad\left(\Sigma A_{y}\right)$. Cal culate the percentage of $x(\% x)$ in peak $x+y$ by the equation:

$$
\frac{100\left(\Sigma A_{x}\right)\left(R R_{x}\right)}{\left(\Sigma A_{x}\right)\left(R R_{x}\right)+\left(\Sigma A_{y}\right)\left(R R_{y}\right)}=\% x
$$

Then cal cul ate $\% \mathrm{y}$ by substituting (RR_{y}) for $\left(\Sigma \mathrm{A}_{\mathrm{x}}\right)\left(\mathrm{RR} \mathrm{R}_{\mathrm{x}}\right)$ in the numerator.
L. Anal yte and I-Std Cal cul ations (conti nued)

Table 12-1. Sel ected ions to be used for estimating proportions of anal ytes in mil ti component GC/MS peaks.

Analytes

dichlorobiphenyls (set)
trichlorobiphenyls (set)
tetrachlorobiphenyls (set)
pentachlorobiphenyls (set)
hexachlorobiphenyls (set)
heptachlorobiphenyls (set)
octachlorobiphenyls (set)
nonachlorobiphenyls (set)
DDE's (set)
$460,462,464,466,468,470$

DDD's and DDT's (set)
trans-nonachlor
405,407,409,411,413
α-chl ordane
371,373,375,377,379
aldrin
261,263,265,267
dieldrin 79
mirex
270,272,274,276
hexachlorobenzene
282,284,286,288
lindane ($\gamma-B H C$)
181,183,185
heptachlor 100
heptachlor epoxide
351,353,355,357

Internal Standards

tetrachloro-m-xylene (TCMX) 242,244,246
dibromooctafluorobiphenyl (DBOFBP) $454,456,458$
L. Anal yte and I-Std Cal cul ations (conti nued)

The peak areas of each PCB with the sane number of chl orine atons (isoner set) are to be summed to give the total area for that set (e.g., the di chl orobi phenyl s). Because the calibration standard contai ns onl y one i soner for each set, use the response of that isoner as a surrogate standard to cal cul ate the anounts of the ot her isoners in the set. In addition, report separately the concentration of each calibration isoner in each extract.

Note: All extracted sulfur (S_{8}) must be renoved from the fractions bef ore anal ysis for PCBs because S_{8} interferes with the GC/ECD and GC/ME responses.

The I-Stds added to the sample at the beginning of the extraction are used to adj ust for anal yte Iosses during sample norkup. Use Equation 12-1 (page 108) to cal culate the anal yte concentration in the sample on a dry wei ght basis. In the cal culations for the Aft, use napht hal ene- d_{8} as the I-Std for napht hal ene, 2- nethyl napht hal ene and 1- net hyl napht hal ene. Use peryl ene- d_{12} as the I-Std for benz[a] anthracene and the AHs bel ow it in Table 2 (page 2). Cal culate all other AH analytes in Table 2 using acenapht hene- d_{10} as the I-Std. To cal culate the results for the chl ori nated anal ytes, use di bronooct af I uor obi phenyl (DBOFBP) as the l-std.

Use Equation 12-2 (page 109) to cal culate the percent recovery of each I-Std. It invol ves the use of a GC/I-Std (HMB and/ or TCMK) added to the extract fraction \mathbf{j} ust before it is transferred to the GC vial. If < 50\% of the I-Std is recovered, reanal yze the unused portion of the sample.
L. Anal yte and I-Std Cal cul ations (conti nued)

Equation 12-1, cal culation of the concentration of anal yte in an aquatic sedi nent or tissue sample, dry wei ght basis:

$$
\begin{aligned}
& R_{1}=\frac{\text { anal yte peak area from the anal ysis of the extract fraction }}{I-S t d \text { peak area fromthe anal ysis of the extract fraction }}, \\
& R_{2}=\frac{\text { anal yte concentration in the ACC reference vi al (ng/ } \mu \mathrm{L})}{I-S t d \text { concentration in the ACC reference vial (ng/ } \mu \mathrm{L})} \text {, and }, ~
\end{aligned}
$$

$$
R_{3}=\frac{\text { anal yte peak area from the anal ysi s of the ACC reference vi al }}{I-S t d \text { peak area from the anal ysi s of the ACC reference vi al }}
$$

[^2]L. Anal yte and I-Std Cal cul ations (conti nued)

Equation 12-2, cal culation of percent ($\%$ recovery of internal standard (1-Std):

$$
\% \text { recovery of the I-Std }=\frac{R_{1} \times R_{2}}{R_{3}} \times \frac{n g \text { GC/I-Std added to the fraction }}{n g I-S t d \text { added to the sample }} \times 100,
$$

where

$$
\begin{aligned}
& R_{1}=\frac{I-S t d \text { peak area from the anal ysis of the extract fraction }}{\text { GC/I-Std peak area from the anal ysis of the extract fraction }}, \\
& R_{2}=\frac{I-S t d \text { concentration in the ACC reference vi al (ng/ } \mu \mathrm{L})}{G \mathbb{G U}-\text { Std concentration in the ACC reference } v i a l(n g / \mu L)} \text {, and }
\end{aligned}
$$

$$
R_{3}=\underline{\text { I-Std peak area from the anal ysis of the ACC reference vi al }}
$$

GC/I-Std peak area from the anal ysis of the ACC reference vi al

M Spi ked Blank Cal culations
Identify the anal yte peaks in the chronatograns of the spi ked bl anks by comparing them with the anal yte retention times obtai ned from the chronat ogram of the ACC reference vial. Cal cul ate the percent ($\%$ recovery of the anal ytes in the spi ked blanks using Equation 12-3. Cal culation of l-Std recovery is unchanged.

Equation 12-3, cal cul ation of the percent recovery of anal ytes added to a blank sample:
$\%$ recovery of anal yte $=\underline{R_{1} \times R_{2}} \times \underline{\text { ng I-Std added to the blank sample }} \times 100$,
$R_{3} \quad \mathrm{ng}$ anal yte added to the bl ank sample
where $R_{1}, R_{\mathbf{2}}$ and R_{3} correspond to the definitions given on page 108.

ACKNOLLEDGMENTS

The anal ytical methods in this publication are the direct result of ei ght years of investigation, adaptation, application and revision by the National Anal ytical Facility. It is a pleasure to acknow edge the extensi ve support NAF has recei ved in this work from numerous organizations and indi vi dual s. Forenost among these has been Dr. Donal d Malins, Di rector of the Envi ronmental Conservation Division of this Center. His unflagging support and confidence have been essential to the success of this research. Li kewise, his deputies, first Neva Karrick and then Dr. Sin-Lam Chan, provi ded every encouragenent in our efforts to establish sound anal ytical procedures for trace extractable toxic organic chemicals in narine envi ronmental samples. We are grateful to Dr. Robert Clark and John Finley of this Division for generous assi stance during the early phases of this research.

NOAA' s joint research prograns with the Envi ronmental Protection Agency (EPA) and the Mneral s Managenent Service (MS) of the Department of the Interi or played naj or rol es in devel oping these met hods. Fi rst came the Interagency Energy/ Envi ronment R\&D Program with EPA Dr. Dougl as Wble, now with NOAA' s National Ocean Service (NOS), admini stered the funding to equip NAF with sophi sticated anal ytical instrumentation, and Dr. Howard Harris, now al so with NOS, admi ni stered fundi ng to eval uate advanced anal ytical techniques for the host of hydrocarbons rel ated to petrol eum The interagency program between NOS and MS, known as the Outer Continental Shel f Envi ronmental Assessment (OCSEA) Program provi ded val uable continuation of this research under the initial sponsorship of Dr. John Cal der, now with NOAA's S\&T Program and the present sponsorshi p of Dr. Carol-Ann Manen.

Al though NOAA's Marine Ecosystem Anal ysi s (MESA) Program was not invol ved with methods devel opnent per se, tho of MESA' s projects provided for extensi ve testing of these nethods through the anal ysis of hundreds of marine envi ronmental samples per year. Special thanks go to MESA's New York Bi ght Project under the di rection of Capt. Lawrence Swanson and to MESA's Puget Sound Project under the di rection of Dr. Howard Harris.

Former NAF associ ates contributed significantly to the devel opment and testing of these nethods: Rand Jenkins, Scott Ranos, Patty Prohaska, Donal d Gennero, and Drs. Lawrence Thomas and James Bruya. The authors are al so indebted to present NAF associ ates: Karen Grans, Judith Verner and Dr. Margaret Krahn, for assi stance in the preparation of the manuscript.

BROW, D. W, A J. FRI EDMAN, D. G. BURRONG, G R. SNYDER, B. G PATTEN, W E. AMES, L. S. RAMDS, P. G. PROHASKA, D. D. GENERQ, D. D. DUNGAN, M Y. UYEDA, and W D. MACLEOD, JR.
1979. I nvestigation of petrol eum in the narine envi rons of the Strait of Juan de Fuca and Northern Puget Sound. U. S. Envi ron. Prot. Agency, Off. Res. Dev., Interagency Energy-Envi ron. Res. Dev. Ser. , EPA 600/7-79-164, 107 p. (Avai I able from U. S. Dep. Comer., Natl. Tech. Inf. Serv., Springfield, Va, as PB80-128218.) EMM RONMENTAL PROTECTI ON AGENCY.
1979. Gui del i nes establ i shing test procedures for the anal ysi s of pol lutants; proposed regul ations. Fed. Regi st. 44(233): 69464-69575. HORWTZ, W, L. P. KAMPS, and K. W BOYER.
1980. Quality assurance in the anal ysis of foods for trace constituents.
J. Assoc. Off. Anal . Chem 63: 1344-1354.

MACLEOD, W D., JR., D. W BRONW, R. G. JENK NS, L. S. RAMDS, and V. D. HENRY.
1977. A pilot study on the design of a petrol eum hydrocarbon basel ine investigation for Northern Puget Sound and the Strait of Juan de Fuca. U. S. Envi ron. Prot. Agency, Off. Res. Dev., I nteragency Energy-Envi ron. Res. Dev. Ser., EPA 600/7-77-098, 53 p. (Avai I abl e from U. S. Dep. Comer., Natl. Tech. Inf. Serv., Springfiel d, Va., as PB- 274591.)

MACLEOD, W D., JR., L. S. RAMDS, A J. FRI EDMAN, D. G. BURROV, P. G PROHASKA, D. L. FI SFER, and D. W BROWN
1981. Anal ysi s of resi dual chl ori nated hydrocarbons, aronatic hydrocarbons and rel ated compounds in sel ected sources, sinks, and bi ot a of the New York Bi ght. U. S. Dep. Commer., NDAA Tech.

Meno. OMPA 6, 128 p. (Available from U. S. Dep. Comer., Nat I.
Tech. Inf. Serv., Springfiel d, Va., as PB82-161209.)
MACLEOD, W D., JR., P. G PROHASKA, D. D. GENERQ, and D. W BROWN
1982. Interl aboratory compari sons of sel ected trace hydrocarbons from mari ne sedi ments. Anal. Chem 54: 386-392.

MALI NS, D. C. B. B. MCCA N D. W BROWW A. K. SPARKS, and H O. HODG NS.
1980. Chemi cal contaminants in Central and Southern Puget Sound. U. S. Dep. Commer., NOAA Tech. Meno. OMPA 2, 295 p. (Avai I abl e from U. S. Dep. Commer., Natl. Tech. Inf. Serv., Spri ngfiel d, Va., as PB81-1558-97.)

MALI NS,
D. C.
B. B. MCCA N,
D. W BROWW, A K. SPARKS, H O HODG NS, and S-L. CHAN
1982. Chemical Contaminants and abnormalities in fish and invertebrates from Puget Sound. U. S. Dep. Commer., NOAA Tech. Meno. OMPA 19, 168 p. (Avai I abl e from U. S. Dep. Commer., Natl. Tech. Inf. Serv., Springfiel d, Va., as PB83-115188.)

MALI NS,
D.
C.
B. B. MCCA N,
D. W BRONW, S-L
CHAN \qquad S. MERS, J. T. LANDAH, P. G PROHASKA, A J. FRI EDMAN, L. D. RHODES, D. G BURRONS, W D. GRONLUND, and H O. HODG NS
1984. Chemi cal Pollutants in sedi ments and di seases of bot tom duel Iing fish in Puget Sound, Kishi ngton. Envi ron. Sci. Technol. 18: 705-713.

APPENDI X

SUGGSTED ANQ LLARY METHODS

THIS PAGE INTENTIONALLY LEFT BLANK

SUGGESTED ANCI LLARY METHODS

The nethods listed herein are additional procedures which NAF has recently adopted. Though they are built upon years of experience, they do not have the advantage of years of testing behi nd them Thus, they are offered provisi onally with the vi ew that they may be of some use to those wishing even tentative recommendations. As with the Standard Procedures, we wel cone suggestions and comments. At present these consi st of conveni ent ways to prepare composite samples. Nb cl ains are made as to their statistical validity.

THIS PAGE INTENTIONALLY LEFT BLANK

1. Sedi nent Composites

A. Equi pnent and Materials List - Note: $\mathrm{CH}_{2} \mathbf{C}_{2}$ - wash all gl assuare and materials contacting the sample
untreated samples (as specified)
4-oz jar with cap
spat ul as
Teflon sheeting (to line the jar cap)
I abel s
500-mL Teflon wash-bottle ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{filled}\right)$
B. Procedure

1. Identify the sedi ment samples specified for preparing the composite sample. Renove the samples from the freezer and allow them to thaw compl etel y.
2. Decant the standi ng water from the top of each sample. Using a spatul a, stir each sample to honogenize thoroughl y, and discard all pebbles, shells, bi ota, and other detritus.
3. Using a spatula, renove ca. 15 g of each sample and place it into the $4-\mathrm{oz}$ jar. Stir the resulting mixture thoroughly to form a honogeneous composite. Ret urn the unused portion of each sample to the freezer.
4. Cap the j ar, label it with the appropriate composite sample desi gnation, and store it in the freezer until needed.
5. Record in the log book the nunber of each sample used to prepare the composite sample.

2. Tissue Composites

A. Equi pnent and Materials List - Nbte: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - uash all glassware and materials contacting the sample
untreated samples (as specified)
2-oz bottle with cap
f orceps
di ssection sci ssors
spatul as, as needed
Teknar Ti ssumi zer
Teflon sheeting (to line the bottle cap)
500-nL Teflon wash-bottle ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-filled)
B. Procedure

1. Identify the untreated tissue samples specified for preparing the composite sample. Renove the samples from the freezer and all ow them to thaw compl etel y.
2. Using the forceps and sci ssors, renove ca. $1 / 2$ of each sample and place it into the $\mathbf{2 - o z}$ bottle. Return the remaining hal f of each sample to its original container and store in the freezer.
3. If the conbi ned wei ght of the sample portions forming the composite sample is < 10 g proceed to step 4. If the wei ght is > 10 g proceed to step 5.
4. Using a spatula, macerate and mix the composite in the 2-oz bottle until it is thoroughly honogeni zed.
5. Using the Teknar Tissumizer, nacerate and mix the composite in the 2-oz bottle for 1 min at a setting of 50 .

B. Procedure (conti nued)

6. Cap the bottle, label it with the appropriate composite sample desi gnation, and store it in the freezer until needed.
7. Record in the log book the number of each sample used to prepare the composite sample.

[^0]: * Criteria: When a sol vent sample (except $\mathrm{CH}_{3} \mathrm{OH}$) is anal yzed by GC (Section 12, page 85), no GC peaks should occur within 0.1 min of an anal yte peak. Mreover, no peaks after the retention time of napht hal ene (GC/FID) or tet rachl oro- m xyl ene (GC/ECD) should gi ve a deflection $>5 \%$ on the $\mathbf{G C}$ chart. $\mathrm{CH}_{3} \mathrm{OH}$ used sol ely for washing, should show no GC peaks > 100% of the GC chart after the retention time of naphthal ene ($G C / F I D$) or tet rachl oro- m xyl ene (GC/ECD).

[^1]: * Add 1 ea for sedi ment sampl es

[^2]: * See Section 9 (page 65).

